Análise das estratégias de avaliação do ciclo de vida e eficiência energética em habitação social
uma revisão sistemática
DOI:
https://doi.org/10.5380/dma.v66i.97754Palavras-chave:
Avaliação do Ciclo de Vida (ACV), eficiência energética, habitação social, materiais de construção, impactos ambientaisResumo
Este artigo apresenta uma análise sistemática da literatura sobre a avaliação do ciclo de vida (ACV) e eficiência energética em habitação social, com foco na interação desses aspectos com a rede elétrica. O estudo avalia diferentes metodologias de ACV aplicadas a projetos habitacionais, considerando as variações nos parâmetros construtivos, no desempenho energético, no contexto climático e nas escolhas metodológicas. A revisão revelou lacunas importantes nas abordagens existentes, especialmente no que tange à ausência de uma metodologia padronizada para a avaliação dos impactos ambientais além das emissões de carbono e do consumo de energia. As principais questões abordadas no artigo foram: (i) estratégias de mitigação para a eficiência energética em habitação social (RQ1), que destacam o uso operacional de energia como o principal responsável pelo impacto ambiental durante o ciclo de vida das habitações sociais; (ii) alternativas de design para habitação social com foco em eficiência energética (RQ2), que evidenciam a importância do contexto climático, da tipologia do edifício e do sistema de isolamento para a eficiência energética; e (iii) estratégias de intervenção material (RQ3), que discutem os impactos incorporados de materiais de isolamento, ressaltando a importância de considerar esses efeitos na avaliação de alternativas de materiais e técnicas construtivas. A revisão conclui que, embora as alternativas de design e os materiais de construção tenham um impacto significativo na eficiência energética, a falta de uma avaliação abrangente que considere todos os aspectos do ciclo de vida limita a capacidade de tirar conclusões definitivas sobre as melhores práticas. O artigo enfatiza a necessidade de adotar uma metodologia integrada e abrangente de avaliação ambiental que contemple não apenas as emissões de carbono e o consumo de energia, mas também outros impactos ambientais relevantes. A implementação de uma abordagem mais sistêmica é essencial para avançar na construção de habitação social mais sustentável, atendendo aos princípios de economia circular e promovendo a transição para sistemas de eletricidade de baixo carbono.
Referências
Ajayi, S. O.; Oyedele, L. O.; Ilori, O. M. Change in the importance of embodied energy: A comparative study of building material specifications and energy sources. Journal of Building Engineering, 23, 324-333, 2019. doi: 10.1016/j.jobe.2019.02.008
Alsaqabi, Y; et al. Citation: Technical-environmental assessment of insulation materials in Saudi Arabia: Integrating thermal performance and LCA. 2023. Available at: https://doi.org/10.3390/buildings
Ascione, F. et al. Energy demand and air quality in social housing buildings: A novel critical review. Energy and Buildings, 319, 2024. doi: 10.1016/j.enbuild.2024.114542
Asdrubali, F. et al. LCA and energy efficiency in buildings: Mapping more than twenty years of research, Energy and Buildings, Elsevier Ltd, 15, 2024. doi: 10.1016/j.enbuild.2024.114684
Ata-Ali, N. et al. Recycled versus non-recycled insulation alternatives: LCA analysis for different climate conditions in Spain. Resources, Conservation and Recycling, 175, 2021. doi: 10.1016/j.resconrec.2021.105838
Babaizadeh, H. et al. Life cycle assessment of exterior window shadings in residential buildings in different climate zones. Building and Environment, 90, 168-177, 2015. doi: 10.1016/j.buildenv.2015.03.038
Bertoli, G. et al. Integrated life cycle analysis of the thermal, environmental, and cost performance of building envelope systems: Case study of a small house considering the change in network mix in Brazil. Energy and Buildings, 310, 2024. doi: 10.1016/j.enbuild.2024.114096
Conci, M. et al. Trade-off between the economic and environmental impact of different decarbonization strategies for residential buildings. Building and Environment, 155, 137-144, 2019. doi: 10.1016/j.buildenv.2019.03.051
Cusenza, M. A. et al. An integrated energy simulation and life cycle assessment to measure the operational and embodied energy of a net-zero energy Mediterranean building. Energy and Buildings, 254, 2022. doi: 10.1016/j.enbuild.2021.111558
Dahiya, D.; Laishram, B. Energy analysis of the life cycle of buildings: A systematic review. Building and Environment Elsevier Ltd, 15, 2024. doi: 10.1016/j.buildenv.2024.111160
Dalbem, R. et al. Optimization of social housing for southern Brazil: From basic performance standards to the passive house concept. Energy, 167, 1278-1296, 2019. doi: 10.1016/j.energy.2018.11.053
Dara, C.; Hachem-Vermette, C.; Assefa, G. Life cycle assessment and life cycle cost of container-based single-family homes in Canada: A case study. Building and Environment, 163, 2019. doi: 10.1016/j.buildenv.2019.106332
Dauletbek, A.; Zhou, P. BIM-based LCA as a comprehensive method for the refurbishment of existing dwellings considering environmental compatibility, energy efficiency, and profitability: A case study in China. Journal of Building Engineering, 46, 2022. doi: 10.1016/j.jobe.2021.103852
Dixit, M. K.; Singh, S. Embodied energy analysis of higher education buildings using an input-output-based hybrid method. Energy and Buildings, 161, 41-54, 2018. doi: 10.1016/j.enbuild.2017.12.022
Flamant, G. et al. Thermal and environmental evaluation of mid-rise social housing retrofit under different climate conditions. Journal of Building Engineering, 46, 2022. doi: 10.1016/j.jobe.2021.103724
Fouquet, M. et al. Methodological challenges and developments in LCA of low-energy buildings: Application to biogenic carbon and global warming assessment. Building and Environment, 90, 51-59, 2015. doi: 10.1016/j.buildenv.2015.03.022
Galimshina, A. et al. What is the best robust and cost-effective environmental solution for building renovation? It is not the usual one. Energy and Buildings, 251, 2021. doi: 10.1016/j.enbuild.2021.111329
Grainne Cuffe. Inside Housing - Insight - Annual sector data returns for 2021-22: five key findings. Available at: https://www.insidehousing.co.uk/insight/the-sectors-annual-data-returns-2021-22-five-key-takeaways-78707. Accessed on: Nov. 3, 2024.
Guan, J.; Zhang, Z.; Chu, C. Quantification of building embodied energy in China using an input-output-based hybrid LCA model. Energy and Buildings, 110, 443-452, 2016. doi: 10.1016/j.enbuild.2015.11.032
Gulotta, T. M. et al. A bottom-up harmonized energy-environmental models for Europe (BOHEEME): A case study on the thermal insulation of the EU-28 building stock. Energy and Buildings, 231, 2021. doi: 10.1016/j.enbuild.2020.110584
Hasik, V. et al. Whole building life cycle environmental impacts and costs: A sensitivity study of design and service decisions. Building and Environment, 163, 2019. doi: 10.1016/j.buildenv.2019.106316
Ingrao, C. et al. How can life cycle thinking support building sustainability? Investigating life cycle assessment applications for energy efficiency and environmental performance Journal of Cleaner Production Elsevier Ltd, 201, 556-569, 2018. doi: 10.1016/j.jclepro.2018.08.080
Kalangos, C. International Journal of Energy Economics and Policy Barriers and Policy Drivers to Energy Efficiency in Energy Intensive Turkish Industrial Sectors. International Journal of Energy Economics and Policy, 7(3), 110-120, 2017. Available at: http:www.econjournals.com
Kiss, B.; Szalay, Z. Modular approach to multi-objective environmental optimization of buildings. Automation in Building, 111, 2020. doi: 10.1016/j.autcon.2019.103044
Kneifel, J. et al. An exploration of the relationship between improvements in energy efficiency and life-cycle energy and carbon emissions using the BIRDS low-energy residential database. Energy and Buildings, 160, 19-33, 2018. doi: 10.1016/j.enbuild.2017.11.030
Kylili, A.; Fokaides, P. A. Policy trends for the sustainability assessment of construction materials: A review. Sustainable Cities and Society, 35, 280-288, 2017. doi: 10.1016/j.scs.2017.08.013
Kylili, A.; Ilic, M.; Fokaides, P. A. Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone. Resources, Conservation and Recycling, 116, 169-177, 2017. doi: 10.1016/j.resconrec.2016.10.010
Li, S. et al. Multi-scale life cycle energy analysis of residential buildings in Victoria, Australia - A typology perspective. Building and Environment, 195, 2021. doi: 10.1016/j.buildenv.2021.107723
Macías, J. et al. Assessment of embodied and operational energy of different construction methods used in social housing in Ecuador. Energy and Buildings, 151, 107-120, 2017. doi: 10.1016/j.enbuild.2017.06.016
Mahlan, S. et al. An integrated life cycle assessment and energy simulation framework for residential building wall systems. Building and Environment, 257, 2024. doi: 10.1016/j.buildenv.2024.111542
MDR. Ministry of Regional Development (MDR) and João Pinheiro Foundation. Housing deficit in Brazil, 2013-2014, 2018. Available at: http://novosite.fjp.mg.gov.br/deficit-habitacional-no-brasil. Accessed on: Nov. 2024.
Mirabella, N. et al. Strategies to improve the energy performance of buildings: A review of their impact on the life cycle. Buildings MDPI AG, 12, 2018. doi: 10.3390/buildings8080105
Monteiro, H.; Freire, F.; Soares, N. Life cycle assessment of a southern European house addressing construction design options for orientation, window sizing, and building shape. Journal of Building Engineering, 39, 2021. doi: 10.1016/j.jobe.2021.102276
Motalebi, M.; Rashidi, A.; Nasiri, M. M. Optimization and integration of BIM-based life cycle assessment for energy efficiency retrofitting of buildings. Journal of Building Engineering, 49, 2022. doi: 10.1016/j.jobe.2022.104022
Najjar, M. et al. Integrated optimization with building information modeling and life cycle assessment for generating energy-efficient buildings. Applied Energy, 250, 1366-1382, 2019. doi: 10.1016/j.apenergy.2019.05.101
Nematchoua, M. K. et al. Analysis of environmental impacts and costs of a residential building over its entire life cycle to achieve nearly zero energy and low emission objectives. Journal of Cleaner Production, 373, 2022. doi: 10.1016/j.jclepro.2022.133834
Newberry, P.; Harper, P.; Norman, J. Carbon assessment of building shell options for eco self-build community housing through the integration of building energy modeling and life cycle analysis tools. Journal of Building Engineering, 70, 2023. doi: 10.1016/j.jobe.2023.106356
Nicolae, B.; George-Vlad, B. Life cycle analysis in refurbishment of the buildings as intervention practices in energy saving. Energy and Buildings, 86, 74-85, 2015. doi: 10.1016/j.enbuild.2014.10.021
Norouzi, M. et al. Low-energy buildings in combination with grid decarbonization, life cycle assessment of passive house buildings in Northern Ireland. Energy and Buildings, 261, 2022. doi: 10.1016/j.enbuild.2022.111936
Pakdel, A.; Ayatollahi, H.; Sattary, S. Embodied energy and CO2 emissions of life cycle assessment (LCA) in the traditional and contemporary Iranian construction systems. Journal of Building Engineering, 39, 2021. doi: 10.1016/j.jobe.2021.102310
Pannier, M. L. et al. Multidisciplinary post-occupancy evaluation of a multifamily house: An example combining sociological, energy, and LCA studies. Journal of Building Engineering, 37, 2021. doi: 10.1016/j.jobe.2020.102139
Passer, A. et al. The impact of future scenarios on building refurbishment strategies towards plus energy buildings. Energy and Buildings, 124, 153-163, 2016. doi: 10.1016/j.enbuild.2016.04.008
Pombo, O.; Rivela, B.; Neila, J. Life cycle thinking towards sustainable development policy-making: The case of energy retrofits. Journal of Cleaner Production, 206, 267-281, 2019. doi: 10.1016/j.jclepro.2018.09.173
Rosa, A. D. La et al. Environmental impacts and thermal insulation performance of innovative composite solutions for building applications. Construction and Building Materials, 55, 406-414, 2014. doi: 10.1016/j.conbuildmat.2014.01.054
Sartor, M. et al. International purchasing offices: Literature review and research directions. Journal of Purchasing and Supply Management, 20(1), 1-17, 2014. doi: 10.1016/j.pursup.2013.09.002
Sartori, T.; Calmon, J. L. Analysis of the impacts of retrofit actions on the life cycle energy consumption of typical neighborhood dwellings. Journal of Building Engineering, 21, 158-172, 2019. doi: 10.1016/j.jobe.2018.10.009
Sharif, S. A.; Hammad, A. Simulation-Based Multi-Objective Optimization of institutional building renovation considering energy consumption, Life-Cycle Cost, and Life-Cycle Assessment. Journal of Building Engineering, 21, 429-445, 2019a. doi: 10.1016/j.jobe.2018.11.006
Sharif, S.A. Development of a surrogate ANN to select near-optimal building energy renovation methods considering energy consumption, LCC, and LCA. Journal of Building Engineering, 25, 1, 2019b. doi: 10.1016/j.jobe.2019.100790
Shrestha, J. K. Assessment of energy demand and greenhouse gas emissions in low-rise building systems: A case study of five building systems constructed after the Gorkha earthquake in Nepal. Journal of Building Engineering, 34, 2021. doi: 10.1016/j.jobe.2020.101831
Song, Q. et al. Characterizing the essential materials and energy performance of city buildings: A Case study of Macau. Journal of Cleaner Production, 194, 263-276, 2018. doi: 10.1016/j.jclepro.2018.05.148
Soust-Verdaguer, B.; Llatas, C.; García-Martínez, A. Critical review of BIM-based LCA method for buildings. Energy and Buildings, 136, 110-120, 2017. doi: 10.1016/j.enbuild.2016.12.009
Stephan, A.; Stephan, L. Achieving net zero life cycle primary energy and greenhouse gas emissions apartment buildings in a Mediterranean climate. Applied Energy, 280, 2020. doi: 10.1016/j.apenergy.2020.115932
Tadeu, S. et al. Eco-efficiency to support the selection of energy conservation measures for buildings: A life cycle approach. Journal of Building Engineering, 61, 2022. doi: 10.1016/j.jobe.2022.105142
Tettey, U. Y. A.; Dodoo, A.; Gustavsson, L. Effect of different frame materials on the primary energy use of a multi-story residential building in a life cycle perspective. Energy and Buildings, 185, 259-271, 2019. doi: 10.1016/j.enbuild.2018.12.017
Tushar, Q. et al. An integrated BIM-enabled LCA and energy simulation approach: The optimized solution for sustainable development. Journal of Cleaner Production, 289, 2021. doi: 10.1016/j.jclepro.2020.125622
UNEP. United Nations Environmental Program. UNEP SBCI, Sustainable Buildings & Climate Initiative. Paris: Available at: https://www.unep.org/topics/cities/buildings-and-construction/sustainable-buildings. Accessed on: Dec. 2024
Weiler, V.; Harter, H.; Eicker, U. Life cycle assessment of buildings and city quarters comparing demolition and reconstruction with refurbishment. Energy and Buildings, 134, 319-328, 2017. doi: 10.1016/j.enbuild.2016.11.004
Zhan, J. et al. Life cycle energy consumption and greenhouse gas emissions of urban residential buildings in Guangzhou City. Journal of Cleaner Production, 194, 318-326, 2018. doi: 10.1016/j.jclepro.2018.05.124
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Monday Luka, Isaac S. A. Brito, Emilia R. Kohlman Rabbani, Mahmoud Shakouri, Maria Helena de Sousa

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os Direitos Autorais sobre trabalhos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. O conteúdo dos trabalhos publicados é de inteira responsabilidade dos autores. A DMA é um periódico de acesso aberto (open access), e adota a licença Creative Commons Atribuição 4.0 Não Adaptada (CC-BY), desde janeiro de 2023. Portanto, ao serem publicados por esta Revista, os artigos são de livre uso para compartilhar (copiar e redistribuir o material em qualquer suporte ou formato para qualquer fim, mesmo que comercial) e adaptar (remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial). É preciso dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas.
Os conteúdos publicados pela DMA do v. 53 de 2020 ao v. 60 de 2022 são protegidos pela licença Creative Commons Atribuição – Não Comercial – Sem Derivações 4.0 Internacional.
A DMA é uma revista de acesso aberto desde a sua criação, entretanto, do v.1 de 2000 ao v. 52 de 2019, o periódico não adotava uma licença Creative Commons e, portanto, o tipo de licença não é indicado na página inicial dos artigos.

