Análise das estratégias de avaliação do ciclo de vida e eficiência energética em habitação social

uma revisão sistemática

Autores

DOI:

https://doi.org/10.5380/dma.v66i.97754

Palavras-chave:

Avaliação do Ciclo de Vida (ACV), eficiência energética, habitação social, materiais de construção, impactos ambientais

Resumo

Este artigo apresenta uma análise sistemática da literatura sobre a avaliação do ciclo de vida (ACV) e eficiência energética em habitação social, com foco na interação desses aspectos com a rede elétrica. O estudo avalia diferentes metodologias de ACV aplicadas a projetos habitacionais, considerando as variações nos parâmetros construtivos, no desempenho energético, no contexto climático e nas escolhas metodológicas. A revisão revelou lacunas importantes nas abordagens existentes, especialmente no que tange à ausência de uma metodologia padronizada para a avaliação dos impactos ambientais além das emissões de carbono e do consumo de energia. As principais questões abordadas no artigo foram: (i) estratégias de mitigação para a eficiência energética em habitação social (RQ1), que destacam o uso operacional de energia como o principal responsável pelo impacto ambiental durante o ciclo de vida das habitações sociais; (ii) alternativas de design para habitação social com foco em eficiência energética (RQ2), que evidenciam a importância do contexto climático, da tipologia do edifício e do sistema de isolamento para a eficiência energética; e (iii) estratégias de intervenção material (RQ3), que discutem os impactos incorporados de materiais de isolamento, ressaltando a importância de considerar esses efeitos na avaliação de alternativas de materiais e técnicas construtivas. A revisão conclui que, embora as alternativas de design e os materiais de construção tenham um impacto significativo na eficiência energética, a falta de uma avaliação abrangente que considere todos os aspectos do ciclo de vida limita a capacidade de tirar conclusões definitivas sobre as melhores práticas. O artigo enfatiza a necessidade de adotar uma metodologia integrada e abrangente de avaliação ambiental que contemple não apenas as emissões de carbono e o consumo de energia, mas também outros impactos ambientais relevantes. A implementação de uma abordagem mais sistêmica é essencial para avançar na construção de habitação social mais sustentável, atendendo aos princípios de economia circular e promovendo a transição para sistemas de eletricidade de baixo carbono.

Biografia do Autor

Monday Luka, University of Pernambuco

Tecnólogo em Engenharia Civil

Isaac S. A. Brito, Universidade de Pernambuco

Especialista em engenharia de diagnóstico

Emilia R. Kohlman Rabbani, Universidade de Pernambuco

Possui pós-doutorado em Engenharia Civil pela Universidade do Minho, doutorado em Engenharia Civil pela University of Pittsburgh, Pittsburgh, PA - USA (2000), mestrado em Engenharia Civil e Ambiental pela University of Pittsburgh - USA (1998), graduação em Engenharia Civil pela Universidade Federal da Paraíba - UFPB (1996) e graduação em Engenharia Civil e Ambiental pela University of Pittsburgh - USA (1995). Trabalhou como engenheira de tráfego na companhia Midwest Research Institute (MRI) fazendo parte da equipe de pesquisadores da área de segurança de trânsito na cidade de Kansas City nos Estados Unidos (2000-2002). Foi professora do Departamento de Engenharia Civil da Universidade Federal de Sergipe (2003-2005) e ingressou na UPE em 2006 como professora adjunta Nível III, e foi promovida a professora associada em 2011. Atuou como coordenadora setorial de Pós-graduação da Escola Politécnica de Pernambuco (POLI) na gestão 2009-2010, como coordenadora do Mestrado em Engenharia Civil (PEC) da POLI/UPE na gestão 2010-2011 e vice-líder do grupo de pesquisa Ergonomia, Higiene e Segurança do Trabalho (2008-2011). Atuou como professora visitante do Technion - Israel Institute of Technology (2011-2012) trabalhando com os professores Dr. Aviad Shapira e Dr. Rafael Sacks no departamento de gestão da construção em projetos relacionados a segurança nas obras e como pesquisadora visitante no Colorado State University - EUA (desde 2013). Atualmente é professora associada com título de livre docente da Universidade de Pernambuco (com Dedicação Exclusiva desde 2006), professora permanente do Mestrado em Engenharia Civil da UPE (desde 2007), coordena o grupo de pesquisa Desenvolvimento Seguro e Sustentável - DESS cadastrado no CNPq (desde 2013), atua como representante dos professores Associados no Conselho de Gestão Acadêmica da POLI (CGA) e atua como Gerente da Seção de Cultura da Escola Politécnica de Pernambuco (desde 2014). Tem experiência na área de Engenharia Civil, com ênfase em segurança em transportes e sustentabilidade social (segurança e higiene ocupacionais) aplicada a construção civil.

Mahmoud Shakouri, Boise State University Idaho United State of America

Professor assistente, Boise State University Idaho United State of America.

Maria Helena de Sousa, Universidade Federal de Pernambuco UFPE

Formada em Engenharia de Energia e mestre em Engenharia Mecânica pela Universidade Federal de Pernambuco (UFPE), Brasil. Atualmente, é doutoranda no Programa de Pós-Graduação em Energia e Tecnologias Nucleares da UFPE, com ênfase no uso de energia proveniente de fontes de biomassa.

Referências

Ajayi, S. O.; Oyedele, L. O.; Ilori, O. M. Change in the importance of embodied energy: A comparative study of building material specifications and energy sources. Journal of Building Engineering, 23, 324-333, 2019. doi: 10.1016/j.jobe.2019.02.008

Alsaqabi, Y; et al. Citation: Technical-environmental assessment of insulation materials in Saudi Arabia: Integrating thermal performance and LCA. 2023. Available at: https://doi.org/10.3390/buildings

Ascione, F. et al. Energy demand and air quality in social housing buildings: A novel critical review. Energy and Buildings, 319, 2024. doi: 10.1016/j.enbuild.2024.114542

Asdrubali, F. et al. LCA and energy efficiency in buildings: Mapping more than twenty years of research, Energy and Buildings, Elsevier Ltd, 15, 2024. doi: 10.1016/j.enbuild.2024.114684

Ata-Ali, N. et al. Recycled versus non-recycled insulation alternatives: LCA analysis for different climate conditions in Spain. Resources, Conservation and Recycling, 175, 2021. doi: 10.1016/j.resconrec.2021.105838

Babaizadeh, H. et al. Life cycle assessment of exterior window shadings in residential buildings in different climate zones. Building and Environment, 90, 168-177, 2015. doi: 10.1016/j.buildenv.2015.03.038

Bertoli, G. et al. Integrated life cycle analysis of the thermal, environmental, and cost performance of building envelope systems: Case study of a small house considering the change in network mix in Brazil. Energy and Buildings, 310, 2024. doi: 10.1016/j.enbuild.2024.114096

Conci, M. et al. Trade-off between the economic and environmental impact of different decarbonization strategies for residential buildings. Building and Environment, 155, 137-144, 2019. doi: 10.1016/j.buildenv.2019.03.051

Cusenza, M. A. et al. An integrated energy simulation and life cycle assessment to measure the operational and embodied energy of a net-zero energy Mediterranean building. Energy and Buildings, 254, 2022. doi: 10.1016/j.enbuild.2021.111558

Dahiya, D.; Laishram, B. Energy analysis of the life cycle of buildings: A systematic review. Building and Environment Elsevier Ltd, 15, 2024. doi: 10.1016/j.buildenv.2024.111160

Dalbem, R. et al. Optimization of social housing for southern Brazil: From basic performance standards to the passive house concept. Energy, 167, 1278-1296, 2019. doi: 10.1016/j.energy.2018.11.053

Dara, C.; Hachem-Vermette, C.; Assefa, G. Life cycle assessment and life cycle cost of container-based single-family homes in Canada: A case study. Building and Environment, 163, 2019. doi: 10.1016/j.buildenv.2019.106332

Dauletbek, A.; Zhou, P. BIM-based LCA as a comprehensive method for the refurbishment of existing dwellings considering environmental compatibility, energy efficiency, and profitability: A case study in China. Journal of Building Engineering, 46, 2022. doi: 10.1016/j.jobe.2021.103852

Dixit, M. K.; Singh, S. Embodied energy analysis of higher education buildings using an input-output-based hybrid method. Energy and Buildings, 161, 41-54, 2018. doi: 10.1016/j.enbuild.2017.12.022

Flamant, G. et al. Thermal and environmental evaluation of mid-rise social housing retrofit under different climate conditions. Journal of Building Engineering, 46, 2022. doi: 10.1016/j.jobe.2021.103724

Fouquet, M. et al. Methodological challenges and developments in LCA of low-energy buildings: Application to biogenic carbon and global warming assessment. Building and Environment, 90, 51-59, 2015. doi: 10.1016/j.buildenv.2015.03.022

Galimshina, A. et al. What is the best robust and cost-effective environmental solution for building renovation? It is not the usual one. Energy and Buildings, 251, 2021. doi: 10.1016/j.enbuild.2021.111329

Grainne Cuffe. Inside Housing - Insight - Annual sector data returns for 2021-22: five key findings. Available at: https://www.insidehousing.co.uk/insight/the-sectors-annual-data-returns-2021-22-five-key-takeaways-78707. Accessed on: Nov. 3, 2024.

Guan, J.; Zhang, Z.; Chu, C. Quantification of building embodied energy in China using an input-output-based hybrid LCA model. Energy and Buildings, 110, 443-452, 2016. doi: 10.1016/j.enbuild.2015.11.032

Gulotta, T. M. et al. A bottom-up harmonized energy-environmental models for Europe (BOHEEME): A case study on the thermal insulation of the EU-28 building stock. Energy and Buildings, 231, 2021. doi: 10.1016/j.enbuild.2020.110584

Hasik, V. et al. Whole building life cycle environmental impacts and costs: A sensitivity study of design and service decisions. Building and Environment, 163, 2019. doi: 10.1016/j.buildenv.2019.106316

Ingrao, C. et al. How can life cycle thinking support building sustainability? Investigating life cycle assessment applications for energy efficiency and environmental performance Journal of Cleaner Production Elsevier Ltd, 201, 556-569, 2018. doi: 10.1016/j.jclepro.2018.08.080

Kalangos, C. International Journal of Energy Economics and Policy Barriers and Policy Drivers to Energy Efficiency in Energy Intensive Turkish Industrial Sectors. International Journal of Energy Economics and Policy, 7(3), 110-120, 2017. Available at: http:www.econjournals.com

Kiss, B.; Szalay, Z. Modular approach to multi-objective environmental optimization of buildings. Automation in Building, 111, 2020. doi: 10.1016/j.autcon.2019.103044

Kneifel, J. et al. An exploration of the relationship between improvements in energy efficiency and life-cycle energy and carbon emissions using the BIRDS low-energy residential database. Energy and Buildings, 160, 19-33, 2018. doi: 10.1016/j.enbuild.2017.11.030

Kylili, A.; Fokaides, P. A. Policy trends for the sustainability assessment of construction materials: A review. Sustainable Cities and Society, 35, 280-288, 2017. doi: 10.1016/j.scs.2017.08.013

Kylili, A.; Ilic, M.; Fokaides, P. A. Whole-building Life Cycle Assessment (LCA) of a passive house of the sub-tropical climatic zone. Resources, Conservation and Recycling, 116, 169-177, 2017. doi: 10.1016/j.resconrec.2016.10.010

Li, S. et al. Multi-scale life cycle energy analysis of residential buildings in Victoria, Australia - A typology perspective. Building and Environment, 195, 2021. doi: 10.1016/j.buildenv.2021.107723

Macías, J. et al. Assessment of embodied and operational energy of different construction methods used in social housing in Ecuador. Energy and Buildings, 151, 107-120, 2017. doi: 10.1016/j.enbuild.2017.06.016

Mahlan, S. et al. An integrated life cycle assessment and energy simulation framework for residential building wall systems. Building and Environment, 257, 2024. doi: 10.1016/j.buildenv.2024.111542

MDR. Ministry of Regional Development (MDR) and João Pinheiro Foundation. Housing deficit in Brazil, 2013-2014, 2018. Available at: http://novosite.fjp.mg.gov.br/deficit-habitacional-no-brasil. Accessed on: Nov. 2024.

Mirabella, N. et al. Strategies to improve the energy performance of buildings: A review of their impact on the life cycle. Buildings MDPI AG, 12, 2018. doi: 10.3390/buildings8080105

Monteiro, H.; Freire, F.; Soares, N. Life cycle assessment of a southern European house addressing construction design options for orientation, window sizing, and building shape. Journal of Building Engineering, 39, 2021. doi: 10.1016/j.jobe.2021.102276

Motalebi, M.; Rashidi, A.; Nasiri, M. M. Optimization and integration of BIM-based life cycle assessment for energy efficiency retrofitting of buildings. Journal of Building Engineering, 49, 2022. doi: 10.1016/j.jobe.2022.104022

Najjar, M. et al. Integrated optimization with building information modeling and life cycle assessment for generating energy-efficient buildings. Applied Energy, 250, 1366-1382, 2019. doi: 10.1016/j.apenergy.2019.05.101

Nematchoua, M. K. et al. Analysis of environmental impacts and costs of a residential building over its entire life cycle to achieve nearly zero energy and low emission objectives. Journal of Cleaner Production, 373, 2022. doi: 10.1016/j.jclepro.2022.133834

Newberry, P.; Harper, P.; Norman, J. Carbon assessment of building shell options for eco self-build community housing through the integration of building energy modeling and life cycle analysis tools. Journal of Building Engineering, 70, 2023. doi: 10.1016/j.jobe.2023.106356

Nicolae, B.; George-Vlad, B. Life cycle analysis in refurbishment of the buildings as intervention practices in energy saving. Energy and Buildings, 86, 74-85, 2015. doi: 10.1016/j.enbuild.2014.10.021

Norouzi, M. et al. Low-energy buildings in combination with grid decarbonization, life cycle assessment of passive house buildings in Northern Ireland. Energy and Buildings, 261, 2022. doi: 10.1016/j.enbuild.2022.111936

Pakdel, A.; Ayatollahi, H.; Sattary, S. Embodied energy and CO2 emissions of life cycle assessment (LCA) in the traditional and contemporary Iranian construction systems. Journal of Building Engineering, 39, 2021. doi: 10.1016/j.jobe.2021.102310

Pannier, M. L. et al. Multidisciplinary post-occupancy evaluation of a multifamily house: An example combining sociological, energy, and LCA studies. Journal of Building Engineering, 37, 2021. doi: 10.1016/j.jobe.2020.102139

Passer, A. et al. The impact of future scenarios on building refurbishment strategies towards plus energy buildings. Energy and Buildings, 124, 153-163, 2016. doi: 10.1016/j.enbuild.2016.04.008

Pombo, O.; Rivela, B.; Neila, J. Life cycle thinking towards sustainable development policy-making: The case of energy retrofits. Journal of Cleaner Production, 206, 267-281, 2019. doi: 10.1016/j.jclepro.2018.09.173

Rosa, A. D. La et al. Environmental impacts and thermal insulation performance of innovative composite solutions for building applications. Construction and Building Materials, 55, 406-414, 2014. doi: 10.1016/j.conbuildmat.2014.01.054

Sartor, M. et al. International purchasing offices: Literature review and research directions. Journal of Purchasing and Supply Management, 20(1), 1-17, 2014. doi: 10.1016/j.pursup.2013.09.002

Sartori, T.; Calmon, J. L. Analysis of the impacts of retrofit actions on the life cycle energy consumption of typical neighborhood dwellings. Journal of Building Engineering, 21, 158-172, 2019. doi: 10.1016/j.jobe.2018.10.009

Sharif, S. A.; Hammad, A. Simulation-Based Multi-Objective Optimization of institutional building renovation considering energy consumption, Life-Cycle Cost, and Life-Cycle Assessment. Journal of Building Engineering, 21, 429-445, 2019a. doi: 10.1016/j.jobe.2018.11.006

Sharif, S.A. Development of a surrogate ANN to select near-optimal building energy renovation methods considering energy consumption, LCC, and LCA. Journal of Building Engineering, 25, 1, 2019b. doi: 10.1016/j.jobe.2019.100790

Shrestha, J. K. Assessment of energy demand and greenhouse gas emissions in low-rise building systems: A case study of five building systems constructed after the Gorkha earthquake in Nepal. Journal of Building Engineering, 34, 2021. doi: 10.1016/j.jobe.2020.101831

Song, Q. et al. Characterizing the essential materials and energy performance of city buildings: A Case study of Macau. Journal of Cleaner Production, 194, 263-276, 2018. doi: 10.1016/j.jclepro.2018.05.148

Soust-Verdaguer, B.; Llatas, C.; García-Martínez, A. Critical review of BIM-based LCA method for buildings. Energy and Buildings, 136, 110-120, 2017. doi: 10.1016/j.enbuild.2016.12.009

Stephan, A.; Stephan, L. Achieving net zero life cycle primary energy and greenhouse gas emissions apartment buildings in a Mediterranean climate. Applied Energy, 280, 2020. doi: 10.1016/j.apenergy.2020.115932

Tadeu, S. et al. Eco-efficiency to support the selection of energy conservation measures for buildings: A life cycle approach. Journal of Building Engineering, 61, 2022. doi: 10.1016/j.jobe.2022.105142

Tettey, U. Y. A.; Dodoo, A.; Gustavsson, L. Effect of different frame materials on the primary energy use of a multi-story residential building in a life cycle perspective. Energy and Buildings, 185, 259-271, 2019. doi: 10.1016/j.enbuild.2018.12.017

Tushar, Q. et al. An integrated BIM-enabled LCA and energy simulation approach: The optimized solution for sustainable development. Journal of Cleaner Production, 289, 2021. doi: 10.1016/j.jclepro.2020.125622

UNEP. United Nations Environmental Program. UNEP SBCI, Sustainable Buildings & Climate Initiative. Paris: Available at: https://www.unep.org/topics/cities/buildings-and-construction/sustainable-buildings. Accessed on: Dec. 2024

Weiler, V.; Harter, H.; Eicker, U. Life cycle assessment of buildings and city quarters comparing demolition and reconstruction with refurbishment. Energy and Buildings, 134, 319-328, 2017. doi: 10.1016/j.enbuild.2016.11.004

Zhan, J. et al. Life cycle energy consumption and greenhouse gas emissions of urban residential buildings in Guangzhou City. Journal of Cleaner Production, 194, 318-326, 2018. doi: 10.1016/j.jclepro.2018.05.124

Publicado

2025-12-22

Como Citar

Luka, M., Brito, I. S. A., Rabbani, E. R. K., Shakouri, M., & Sousa, M. H. de. (2025). Análise das estratégias de avaliação do ciclo de vida e eficiência energética em habitação social: uma revisão sistemática. Desenvolvimento E Meio Ambiente, 66, 611–637. https://doi.org/10.5380/dma.v66i.97754