Modelo preditivo de transição da paisagem
bacia hidrográfica do Piraputanga
DOI:
https://doi.org/10.5380/dma.v66i.95152Palavras-chave:
serviços ecossistêmicos, transformação da paisagem, impacto ambientalResumo
A temática Serviços Ecossistêmicos (SE) tem sido alvo de diversos autores, sendo conceituado como os processos em que os ecossistemas naturais sustentam a vida humana. Os SE são divididos em quatro classes: provisão, regulação, suporte e cultural. As transformações ambientais, como o desmatamento ou a degradação, comprometem diretamente os SE. Diante disso, o objetivo central deste trabalho foi analisar o impacto das transformações ambientais na mudança das paisagens naturais da Bacia Hidrográfica do Córrego Piraputanga (BHCP). Dados referentes ao uso e à cobertura da terra, ao desmatamento e à perda de superfície de água disponíveis foram tomados no MapBiomas, e dados de queimadas disponíveis na plataforma INPE. Para classificação do grau de transformação da paisagem utilizou-se o grau de hemerobia em conjunto com modelo baseado na tendência linear com simulações Monte-Carlo. As análises evidenciam tendências de conversão de áreas naturais, como formações florestais e savânicas, para usos agrícolas e de pastagem, que em 2022 representaram 40,51 % da área equivalente a 67,74 km². Houve queda na superfície de água em 40%, contrastando o aumento de áreas de pastagem (155 %) e número de queimadas 163 %. As projeções realizadas demonstraram diminuição na quantidade de água, aumento do desmatamento e de áreas de pastagem. Isso indica que a quantidade de água na região chegará a desaparecer em 2067, período em que a floresta estará quase toda extinta devido ao aumento da atividade agropecuária. É importante destacar a necessidade de políticas públicas para a atenuação dessas observações. Este trabalho evidencia o processo de transição da paisagem, que ainda está classificado como grau de hemerobia mesohemerobiótico. Entretanto, todos os resultados indicam que há um processo de alteração acentuado, e que medidas devem ser tomadas para que a situação não se agrave. O processo de transição na região são tendências que afetam a biodiversidade e a capacidade dos ecossistemas de fornecer serviços ambientais essenciais. Por fim, as projeções futuras elevam preocupações considerando a perda dos recursos hídricos como fator crucial.
Referências
Aryal, K.; Maraseni, T.; Apan, A. How much do we know about trade-offs in ecosystem services? A systematic review of empirical research observations. Science of The Total Environment, 806, 151229, 2022. doi: 10.1016/j.scitotenv.2021.151229.
Azevedo, J. C. Florestas, ambiente e sustentabilidade: uma abordagem centrada nos serviços de ecossistema das florestas do distrito de Bragança. Academia das Ciências de Lisboa (ACL), Sociedade Portuguesa de Ciências Florestais, 2012. Disponível em: http://hdl.handle.net/10198/7135.
Alho, C. J. R.; Mamade S. B.; Benites, M. et al. Threats to the biodiversity of the Brazilian Pantanal due to land use and occupation. Ambiente & Sociedade, 22, 2019. doi: https://doi.org/10.1590/1809-4422asoc201701891vu2019L3AO.
Araújo, H. F. P.; Machado, C. C. C.; Pareyn, F. G. C. et al. A sustainable agricultural landscape model for tropical drylands. Land use policy, 100, 104913, 2021. doi: 10.1016/j.landusepol.2020.104913.
Araújo, H. F. P.; Canassa N. F.; Machado C. C. C. et al. Human disturbance is the major driver of vegetation changes in the Caatinga dry forest region. Scientific Reports 13, 18440, 2023. doi: 10.1038/s41598-023-45571-9.
Aquino, F. D. G.; Albuquerque, L. B.; Alonso, A. M. et al. (Org.) Cerrado: restauração de matas de galeria e ciliares. Embrapa, Brasília, DF. 2012. Disponível em: https://www.researchgate.net/profile/Fabiana-De-Aquino/publication/269690716_Cerrado_restauracao_de_matas_de_galeria_e_ciliares/links/5491a9db0cf269b0486168f6/Cerrado-restauracao-de-matas-de-galeria-e-ciliares.pdf.
Aguiar, M. C. P.; Tavares, P. A. D. S.; Alvarenga, A. F. S. Avaliação da Qualidade da Mata Ciliar de Bacia Hidrográfica Urbana: Um Estudo Em João Monlevade (MG). Revista Multidisciplinar do Nordeste Mineiro, 12(2), 2024. doi: 10.61164/rmnm.v12i2.2835.
Brasil. Decreto Nº 6.958, de 29 de dezembro de 2005, Lei comlementar n.° 233, de 21 de dezembro de 2005. Institui a Política Florestal do Estado de Mato Grosso. Disponível em: https://legislacao.mt.gov.br/mt/decreto-n-6958-2005-mato-grosso-regulamenta-a-gestao-florestal-do-estado-de-mato-grosso-e-da-outras-providencias?origin=instituicao.
Brauman, K. A.; Daily G. C.; Duarte, T. K. et al. The nature and value of ecosystem services: an overview highlight in ghydrologic services. Annual Review of Environment and Resources, 32, 67-98, 2007. doi: 10.1146/annurev.energy.32.031306.102758.
Capoane, V. Expansão da fronteira agrícola no Estado de Mato Grosso entre os anos de 1988 e 2018. Caderno Prudentino de Geografia, 1(44), 73-98. 2022. Disponível em: http://200.145.6.156/index.php/cpg/article/view/8076.
Češljar, G.; Stevović, S. Small reservoirs and their sustainable role in firesprotectionofforestresources. RenewableandSustainable Energy Reviews, 47, 496-503, 2015. doi: 10.1016/j.rser.2015.03.071.
Costanza, R.; d’Arge, R; Groot, R. et al. The value of the world's ecosystem services and natural capital. Nature, 387, 253–260, 1997. doi: 10.1038/387253a0.
Caumo, S.; Lázaro, W. L.; Oliveira-Junior, E. S. et al. Human risk assessment of ash soil after 2020 wildfires in Pantanal biome (Brazil). Air Quality, Atmosphere & Health, 15(12), 2239-2254, 2022. doi: 10.1007/s11869-022-01248-2.
Costa, T. G.; Sousa, N. F. M.; Zambaldi, L. P. Mapeamento dos serviços ecossistêmicos de APPs de cursos d’água: caso da bacia do rio Doce. Diversitas Journal, 7(4), 2507-2522, 2022. doi: 10.48017/dj.v7i4.2049.
Cook, C.; Bakker, K. Water security: Debating an emerging paradigm. Global environmental change, 22(1), 94-102, 2012. doi: 0.1016/j.gloenvcha.2011.10.011.
Chaiyarat, R.; Thongkrathok, P.; Maisuwan, W. et al. Variation in water utilization by mammal diversity in Khao Phaeng Ma Non-hunting area, Thailand. Heliyon, 10(8), 2024. doi: 10.1016/j.heliyon.2024.e29786.
Chen, Y.; Vardon, M. Accounting for water-related ecosystem services to provide information for water policy and management: an Australian case study. Ecosystem Services, 69, 101658, 2024. doi: 10.1016/j.ecoser.2024.101658.
Daily, G. C. Introduction: what are ecosystem services. Nature’sservices: Societal dependence on natural ecosystems. 1(1), 1997. Disponível em: https://www.academia.edu/download/37236591/Daily_1.pdf.
Derek, M.; Kulczyk, S.; Grzyb, T. et al. ‘This is my magical place here’. Linking cultural ecosystem services and landscape elements in urban green spaces. Ecosystem Services, 71, 101699, 2025. doi: 10.1016/j.ecoser.2025.101699.
Dos Santos Funaro, J.; Souza, C. A.; Leandro, G. R. S. et al. Médio curso da bacia hidrográfica do córrego Piraputangas, no município de Cáceres–Mato Grosso: uso da terra e alterações ambientais. Revista Brasileira de Geografia Física, 15(06), 2831-2852, 2022. doi: 10.26848/rbgf.v15.6.p2831-2852.
Dudgeon, D.; Arthington, A. H.; Gessner, M. O. et al. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews, 81(2), 163-182, 2006. doi: 10.1017/S1464793105006950.
Dale, V. H. The relationship between land‐use change and climate change. Ecological applications, 7(3), 753-769, 1997. doi: 10.1890/1051-0761(1997)007[0753:TRBLUC]2.0.CO;2.
Eguiguren, P; Fischer, R; Günter, S. Degradation of ecosystem services and deforestation in landscapes with and without incentive-based forest conservation in the Ecuadorian Amazon. Forests, 10(5), 442, 2019. doi: 10.3390/f10050442
Feng, X.; Merow, C.; Liu, Z. et al. How deregulation, drought and increasing fire impact Amazonian biodiversity. Nature, 597, 516–521, 2021. doi: 10.1038/s41586-021-03876-7.
Freitas, A. R.; Carvalho, S. M. Classificação Hemeróbica Das Unidades De Paisagem Da Bacia Hidrográfica Do Rio Cará-Cará, Ponta Grossa – PR. Iniciação Científica Cesumar,10(01), 63-69, 2008. Disponível em: https://periodicos.unicesumar.edu.br/index.php/iccesumar/article/view/697.
Fugère, V.; Nyboer, E. A.; Bleecker, J. C. et al. Impacts of forest loss on inland waters: Identifying critical research zones based on deforestation rates, aquatic ecosystem services, and past research effort. Biological Conservation, 201, 277-283, 2016. doi: 10.1016/j.biocon.2016.07.012.
Groot, R. S. de; Wilson, M. A.; Boumans, R. M. J. A. typology for theclassification, description and valuation of ecosystem functions, goods and services. Ecological economics, 41(3), 393-408, 2002. doi: 10.1016/S0921-8009(02)00089-7.
Gurara, M. A.; Jilo, N. B.; Tolche, A. D. Modelling climate change impact on the stream flow in the Upper Wabe Bridge watershed in WabeShebele River Basin, Ethiopia, InternationalJournalof River Basin Management, 2021. doi: 10.1080/15715124.2021.1935978.
Gusmão, L. H. A.; Lobo, A. A.; Tourinho, H. L. Z. Mudança do Uso e da Cobertura da Terra e Hemerobia das Paisagens: o caso da Região Geográfica Imediata de Belém – Pará (1985-2018), Geografia (Londrina) 30(2), 169-189, 2021. doi: 10.5433/2447-1747.2021v30n2p169.
Gunacti, M. C.; Gul, G. O.; Cetinkaya, C. P. et al. Evaluating impact of land use and land cover change under climate change on the Lake Marmara system. Water Resources Management, 37(6-7), 2643-2656, 2023. doi: 10.1007/s11269-022-03317-8.
Gomez, I.; Daniel F.; Cramp, R L.; Franklin, Craig E. Fire andrain: A systematic review oftheimpactsofwildfireandassociatedrunoffonaquatic fauna. Global ChangeBiology, 28(8), 2578-2595, 2022. doi: 10.1111/gcb.16088.
GWP. Partnerships Global Water. Towards Water Security: a framework for action. Global Water, 2000.
Kalogiannidis, S.; Kalfas, D.; Giannarakis, G. et al. Integration of water resources management strategies in land use planning towards environmental conservation. Sustainability, 15(21), 15242. 2023. doi: 10.3390/su152115242.
Kong, X. et al. Reservoir water quality deterioration due to deforestation emphasizes the indirect effects of global change. Water research, 221, 118721 2022. doi: 10.1016/j.watres.2022.118721.
Lázaro, W. L. et al. Climate change reflected in one of the largest wetlands in the world: an overview of the Northern Pantanal water regime. Acta Limnologica Brasiliensia, 32, 2020. doi: 10.1590/S2179-975X7619.
Mengist, W.; Soromessa, T.; Feyisa, G. L. A global view of regulatory ecosystem services: existed know ledge, trends, and research gaps. EcolProcess, 9(40), 2020. doi: 10.1186/s13717-020-00241-w.
MEA, Millennium ecosystem assessment. Ecosystemsandhumanwell-being Washington, DC: Island press, 5, 563-563, 2005. Disponível em: https://www.researchgate.net/publication/297563785_Millennium_Ecosystem_Assessment_Ecosystems_and_human_well-being_synthesis.
Menezes, R. S. C.; Sales, A. T.; Primo, D. C.; et al. Soilandvegetationcarbon stocks afterland-use changes in a seasonallydry tropical forest. Gederma. 390, 114943. 2021. doi: 10.1016/j.geoderma.2021.114943.
Machado, A. L. S.; Pacheco, J. B. Serviços ecossistêmicos e o ciclo hidrológico da Bacia Hidrográfica Amazônica – the biotic pump. Revista GEONORTE, 01(01), 71-89, 2010. Disponível em: https://periodicos.ufam.edu.br/index.php/revista-geonorte/article/view/1117.
Oliveira Junior, E. S.; Butakka, C. M. M.; Silva, C. J. et al. A influência do pulso de inundação na ecolimnologia de baías pantaneiras: um estudo na dinâmica de invertebrados aquáticos. Holos Environment, 13(2), 188-199, 2013. doi: 10.14295/holos.v13i2.6688.
Oliveira Junior, E. S.; Van Bergen, T. J. H. M.; Nauta, J. et al. Water Hyacinth’s Effect on Greenhouse Gas Fluxes: A Field Study in a Wide Variety of Tropical Water Bodies. Ecosystems 24, 988-1004, 2021. doi: 0.1007/s10021-020-00564-x.
Paiva, S. L. P. Efeito dos usos da terra e da cobertura vegetal na temperatura superficial do solo da bacia hidrográfica do córrego Piraputanga/MT-Brasil. Dissertação (mestrado), Universidade Federal de Mato Grosso, Instituto de Física, Programa de Pós-graduação em Física Ambiental, Cuiabá, 2023. Disponível em: http://ri.ufmt.br/handle/1/5715.
Parron, L. M.; Garcia, J. R.; Oliveira, E. B. et al. (Org.) Serviços ambientais em sistemas agrícolas e florestais do Bioma Mata Atlântica. Embrapa Florestas-Livro científico (ALICE), Brasília, DF., 370p 2015. Disponível em: https://hbjunior19.wordpress.com/wp-content/uploads/2015/08/livro-servicos-ambientais-embrapa.pdf.
Pérez-Cárdenas, N.; Mora, F.; Arreola-Villa, F. et al. Effects of landscape composition and site land-use intensity on secondary succession in a tropical dryforest. Forest Ecologyand Management, 482, 2021. doi: 10.1016/j.foreco.2020.118818.
Pielke S. R, Roger A. Land use andclimatechange. Science, 310(5754), 1625-1626, 2005. doi: 10.1126/science.1120529.
Pereira, R. H. G. Espíndola, E. L. G.; Eler, M. N. Limnological variable sand their correlation with water flow in fishponds. Acta Limnologica Brasiliensia, 16(3), 263-271, 2004. Disponível em: http://www.alb.periodikos.com.br/article/627b1136782aad05cd1891d2/pdf/alb-16-3-263.pdf.
Pelissari, T. D. et al. Dynamics of major environmental disasters involving fire in the Brazilian Pantanal. Scientific Reports, 13(1), 21669, 2023. doi: 10.1038/s41598-023-49154-6.
Pessoa, L. A.; do Couto, E. V.; Pagotto, J. P. A. et al. Scale effects of riparian forests on fish diversity in streams of the upper Paraná River basin. Hydrobiologia, 1-13, 2024. doi: 10.1007/s10750-024-05699-9.
Qu, X.; Li, X.; Bardgett, R. et al. Deforestation impacts soil biodiversity and ecosystem services worldwide. Proceedings of the National Academy of Sciences, 121(13), e2318475121, 2024. doi: 10.1073/pnas.2318475121.
Ramos, A. W. P.; Silva Luz, C. C.; Silva Neves, S. M. A. et al. Análise da capacidade e conflito de uso da terra na bacia hidrográfica do Córrego da Piraputanga-MT, Brasil. Caderno de Geografia, 28(55), 812-827, 2018. doi: 10.5752/P.2318-2962.2018v28n55p812-827.
Rodrigues, L. C.; Silva Neves, S. M. A.; Silva, M. B. et al. Análises da transformação antrópica e morfométrica da bacia Hidrográfica Do Córrego Piraputanga, Mato Grosso, Brasil. Geo UERJ, 39, 2021. doi: 10.12957/geouerj.2021.57306
Rurangwa, M. L. Aguirre-Gutiérrez, J.; Matthew, T. J. et al. Effects of land-use change on avian taxonomic, function a land phylogenetic diversity in a tropical montanerainforest. Diversity and Distribuitions, 27, 1732-1746. 2021. doi: 10.1111/ddi.13364.
Robson, B. J.; Chester, E. T.; Matthews, T. G. et al. Post-wildfire recovery of in vertebrate diversity in drought-affected head water streams. AquatSci, 80, 21, 2018. doi: 10.1007/s00027-018-0570-7.
Ruscheinsky, A.; Calgaro, C.; Weber, T. et al. Ética, direito socioambiental e democracia. Caxias do Sul: Educs, 2018. Disponível em: https://www.academia.edu/36581889/Cap%C3%ADtulo_de_livro_Esfera_p%C3%BAblica_democr%C3%A1tica_no_Brasil_%C3%A0_luz_de_Rawls_e_Habermas_p_230_245_pdf.
Souza, C. A.; Sousa, J. B. Bacia Hidrográfica do Córrego Piraputanga, Cáceres, Mato Grosso–Brasil: Caracterização ambiental e dinâmica fluvial. Geoaraguaia, Barra do Graças, 14(1), 83-103, 2014. Disponível em: https://periodicoscientificos.ufmt.br/ojs/index.php/geo/article/view/4875.
Ribeiro, J. F.; Walter, B. M. T. Fitofisionomias do bioma Cerrado. 1998. In: Sano, S. M.; Almeida, S. P. de (Orgs.). Cerrado: ambiente e flora. Planaltina: EMBRAPA-CPAC, 1998.
Shaheen, H.; Attique, A.; Riaz, M. T. et al. From biodiversity hotspot to conservation hotspot: assessing distribution, population structure, associated flora and habitat geography of threatened Himalayan Yew in temperate forest ecosystems of Kashmir. Biodivers Conserv, 2024. doi: 10.1007/s10531-023-02758-w.
Salomão, R. P.; Lopera-Toro, A.; Pulido-Herrera, L. A. et al. Habitat type affects the diversity of dung beetle (Coleoptera: Scarabaeidae) assemblages in a neotropical mountainous region of Colombia. International Journalof Tropical Insect Science, 1-11, 2023. doi: 10.1007/s42690-023-00987-8.
Santos, L.; Pereira Zamparoni, C. A. G. Evolução demográfica e influência no uso e ocupação do solo urbano em Cáceres (MT) entre 1940 E 2010. Acta Geográfica, 6(13), 2012. doi: 10.5654/acta.v6i13.658.
Sharma, G.; Telwala, Y.; Chettri, P. Integrating Nature-Based Solutions for Water Security in Fragile Mountain Ecosystems: Lessons from Dhara Vikas in Sikkim, India. Nature-Based Solutions, 100169, 2024. doi: 10.1016/j.nbsj.2024.100169.
Sinha, R. K.; Eldho, T. I.; Subimal, G. Assessingtheimpactsofland use/land cover andclimatechangeon surface runoffof a humid tropical riverbasin in Western Ghats, India. InternationalJournalof River Basin Management. 2020. doi: 10.1080/15715124.2020.1809434.
Schuler, A. E.; Prado, R. B.; Turetta, A. P. D. et al. Serviços ambientais hídricos. In: Fidalgo, E. C. C.; Prado, R. B.; Turetta, A. P. D.; Schuler, A. E. Manual para Pagamento por Serviços Ambientais Hídricos: seleção de áreas e monitoramento. Brasília: Embrapa, p. 14–29, 2017. Disponível em: https://www.researchgate.net/profile/Rachel-Prado/publication/359879237_Manual_para_Pagamento_por_Servicos_Ambientais_Hidricos/links/62548909b0cee02d6963cb36/Manual-para-Pagamento-por-Servicos-Ambientais-Hidricos.pdf.
Tavares, C. C.; Sousa, J. B.; Da Silva, F. L. Qualidade da água na bacia hidrográfica do córrego Piraputangas, Cáceres, Mato Grosso. Revista Equador, 10(2), 155-182, 2021. doi: 10.26694/equador.v1.
TEEB. The Economics of Ecosystems and Biodiversity: Main streaming the Economics of Nature: A synthesis, of approach, conclusion and recommendation of TEEB. 2010. Disponível em: https://teebweb.org/publications/teeb-for/synthesis/.
Trevisan, D. P. et al. Environmental vulnerability index: an evaluation of the water and the vegetation quality in a Brazilian Savanna and Seasonal Forest biome. EcologicalIndicators, 112, 106163, 2020. doi: 10.1016/j.ecolind.2020.106163.
Turunen, J.; Elbrecht, V.; Steinke, D. et al. Riparian forests can mitigate warming and ecological degradation of agricultural headwater streams. Freshwater Biology, 66(4), 785-798, 2021. doi: 10.1111/fwb.13678.
Torres, A. V.; Tiwari, C.; Atkinson, S. F. Progress in ecosystemservicesresearch: a guide for scholars andpractitioners. Ecosystem Services, 49, 2212-0416, 2021. doi: 10.1016/j.ecoser.2021.101267.
Tylianakis, F. M.; Ribeiro, E. R.; Lewis. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature, 445(7124), 202-205, 2007. doi: 10.1038/nature05429.
Trenberth, K.; Dai, A.; Van Der Schrier, G. et al. Global warming and changes in drought. Nature Clim Change, 4, 17-22, 2014. doi: 10.1038/nclimate2067.
Thomaz, S. M. Ecosystem services provided by freshwater macrophytes. Hydrobiologia 850, 2757-2777, 2023. doi: 10.1007/s10750-021-04739-y.
UN-WATER. Water security & the global water agenda: a UN-water analytical brief. SCAPE, UN, United Nations University (UNU), 2013. Disponível em: Water Security and the Global Water Agenda | UN-Water.
UN. United Nations. Resolution adopted by the General Assembly on 25 September 2015. Transforming our world: the 2030 Agenda for Sustainable Development. Disponível em: https://undocs.org/en/A/RES/70/1.
Walz, U.; Stein, C. Indicators of hemeroby for the monitoring of landscapes in Germany. Journal for Nature Conservation, 22, 279-289, 2014. doi: 10.1016/j.jnc.2014.01.007.
Yuan, X.; Wang, Y.; Ji, P. et al. A global transition to flash drought sunder climate change. Science, 380(6641), 187-191, 2023. doi: 10.1126/science.abn6301.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Thiago Ferreira Pereira, Beatriz Ferraz Buhler, Sandra Mara Alves da Silva Neves, Wilkinson Lázaro Lopes, Claumir Cesar Muniz, Ernandes Sobreira Oliveira Junior

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
Os Direitos Autorais sobre trabalhos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. O conteúdo dos trabalhos publicados é de inteira responsabilidade dos autores. A DMA é um periódico de acesso aberto (open access), e adota a licença Creative Commons Atribuição 4.0 Não Adaptada (CC-BY), desde janeiro de 2023. Portanto, ao serem publicados por esta Revista, os artigos são de livre uso para compartilhar (copiar e redistribuir o material em qualquer suporte ou formato para qualquer fim, mesmo que comercial) e adaptar (remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial). É preciso dar o crédito apropriado, prover um link para a licença e indicar se mudanças foram feitas.
Os conteúdos publicados pela DMA do v. 53 de 2020 ao v. 60 de 2022 são protegidos pela licença Creative Commons Atribuição – Não Comercial – Sem Derivações 4.0 Internacional.
A DMA é uma revista de acesso aberto desde a sua criação, entretanto, do v.1 de 2000 ao v. 52 de 2019, o periódico não adotava uma licença Creative Commons e, portanto, o tipo de licença não é indicado na página inicial dos artigos.

