META-ANALYSIS OF THE ACTION OF FORSKOLIN DURING IN VITRO CULTURE OF BOVINE EMBRYOS AND ITS IMPLICATION ON CRYOPRESERVATION

Authors

DOI:

https://doi.org/10.5380/avs.v28i3.90495

Keywords:

Delipidation, Cryotolerance, in vitro fertilization.

Abstract

Increased rates of embryonic re-expansion and implantation have been reported following the use of forskolin during embryo culture, primarily attributed to the reduction of intraplasmic lipids, which improves cryopreservation. The aim of this meta-analysis was to compare the occurrence of embryonic re-expansion among different studies that utilized forskolin in vitro for embryo production. Five articles, out of 159, assessing forskolin at concentrations of 2.5, 5.0, and/or 10µM in embryo culture were considered from 1980 to 2022, comparing them to the control group (in vitro culture with forskolin). The Restricted Maximum Likelihood Method (REML) was employed to compare the results of the articles. The Q test was used to identify heterogeneity among the studies, and the I² analysis was used to quantify the heterogeneity between the studies and to quantify the heterogeneity between the studies. Based on the statistical analysis, it is inferred that embryos cultivated with forskolin at a concentration of 10µM are 71% more likely to re-expand, compared to the control group, with a 95% confidence interval, ranging from 27 to 132%. There was no statistically significant difference in the likelihood of embryonic re-expansion when comparing embryos treated with a forskolin at 5µM, and the control group, suggesting that a concentration of 10µM would enhance the quality of cryopreserved bovine embryos. Further experiments are required to define the correct concentration of forskolin in vitro for bovine embryos.

References

ABE, H.; YAMASHITA, S.; SATOH, T.; HOSHI, H. Accumulation of cytoplasmic lipid droplets in bovine embryos and cryotolerance of embryos developed in different culture systems using serum-free or serum-containing media. Molecular Reproduction and Development v.61, p.57–66, 2002. Available from: <https://pubmed.ncbi.nlm.nih.gov/11774376/> Accessed: 24/04/2022 doi: 10.1002/mrd.1131. PMID: 11774376.

AKSU, D.A.; AGCA, C.; AKSU, S.; BAGIS, H.; AKKOC, T.; CAPUTCU, A.T.; et al. Gene expression profiles of vitrified in vitro- and in vivo-derived bovine blastocysts. Molecular Reproduction and Development. v.79(9), p.613–25. 2012. Available from: https://pubmed.ncbi.nlm.nih.gov/22778065/ Accessed: 17/08/22. Doi 10.1002/mrd.22068

BORENSTEIN, M.; HEDGES, L.V.; HIGGINS, J.P.; ROTHSTEIN, H.R. Introduction to meta-analysis. New York: John Wiley & Sons; 2009

CARRO, M.; BUSCHIAZZO, J.; RÍOS, G,L.; ORESTI, G.M.; ALBERIO, R.H. Linoleic acid stimulates neutral lipid accumulation in lipid droplets of maturing bovine oocytes. Theriogenology v.79, p.687–94, 2013. Available from: <https://pubmed.ncbi.nlm.nih.gov/23273433/> Accessed: 13/02/22 doi: 10.1016/j.theriogenology.2012.11.025. Epub 2012 Dec 27. PMID: 23273433.

CUELLO, C.; GOMIS, J.; ALMIÑANA. C. et al. Effect of MEM vitamins and forskolin on embryo development and vitrification tolerance of in vitro-produced pig embryos. Animal Reproduction Science, v.136(4), p.296–302, 2013. Available from: <https://pubmed.ncbi.nlm.nih.gov/23238049/> Accessed: 01/02/22 doi: 10.1016/j.anireprosci.2012.11.003. Epub 2012 Nov 12. PMID: 23238049.

DALCIN, L.; SILVA, R.C.; PAULINI, F.; SILVA, B.D.M.; NEVES, J.P.; LUCCI, C.M. Cytoskeleton structure, pattern of mitochondrial activity and ultrastructure of frozen or vitrified sheep embryos. Cryobiology. v.67(2), p.137–45. 2013. Available from: <https://pubmed.ncbi.nlm.nih.gov/23770514/> Accessed: 17/08/22. doi 10.1016/j.cryobiol.2013.05.012

HIGGINS, J.P.T. THOMPSON S G, DEEKS J J, ALTMAN D G. Measuring inconsistency in meta-analyses. BMJ. v.327, p.557, 2003. Accessed: 17/08/22. doi:10.1136/bmj.327.7414.557

HIGGINS, J.; GREEN, S.; EDITORS. Cochrane handbook for systematic reviews of interventions. Version 5.1.0. Oxford: Cochrane Collaboration; 2011. Available from: <http://www.cochrane-handbook.org >Accessed: 17/08/22

KARAGENC, L.; SERTKAYA Z.; CIRAY, N.; ULUG, U.; BAHCECI, M. Impact of oxygen concentration on embryonic development of mouse zygotes. Reproductive BioMedicine Online. v.9, p.409-417, 2004. Available from: < https://pubmed.ncbi.nlm.nih.gov/15511341/ > Accessed: 21/02/22. doi: 10.1016/s1472-6483(10)61276-x

MENEGHEL, M.; DALL’ACQUA, P.C.; AMBROGI, M.; LEÃO, C.S.; ROCHA-FRIGONI, N.A.S.; MINGOTI, G.Z. "Lipid Content and Cryotolerance of in Vitro-produced Bovine Embryos Treated with Forskolin before Vitrification." Pesquisa Veterinária Brasileira. v.37.p.4: 395-400, 2017. Available from: < https://www.scielo.br/j/pvb/a/t47qwShY5mcvnTd4ZxZ8jwP/?lang=en&format=pdf > Accessed: 21/02/22. doi: 10.1590/S0100-736X2017000400015

OLIVEIRA, C.S.; FEUCHARD, V.L.D.S.; MARQUES, S.C.S.; SARAIVA, N.Z. Modulation of lipid metabolism through multiple pathways during oocyte maturation and embryo culture in bovine. Zygote. v.18, p.1-9, 2021. Available from: <https://www.cambridge.org/core/journals/zygote/article/abs/modulation-of-lipid-metabolism-through-multiple-pathways-during-oocyte-maturation-and-embryo-culture-in-bovine/A3D664A61DE7711B0DA58EDA5702B6C2> Accessed: 06/02/22. doi: 10.1017/s0967199421000629

PASCHOAL, D.M.; SUDANO, M.J.; GUASTALI, M.D.; DIAS MAZIERO, R.R.; CROCOMO, L.F.; MAGALHÃES, L.C.; DA SILVA RASCADO, T.; MARTINS, A.; DA CRUZ LANDIM-ALVARENGA, F. Forskolin effect on the cryosurvival of in vitro-produced bovine embryos in the presence or absence of fetal calf serum. Zygote. v.22(2), p.146-57. 2014. Available from: <http://hdl.handle.net/11449/112379> Accessed: 09/03/22. doi: 10.1017/S0967199412000354

PAGE, M.J.; MCKENZIE, J.E.; BOSSUYT, P.M.; BOUTRON, I.; HOFFMANN, T.C.; MULROW, C.D.; ET AL. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021;372:n71. doi: 10.1136/bmj.n71 Online. Available from: <http://www.prisma-statement.org/> Accessed: 17/08/22.

PASCHOAL, D.M.; SUDANO, M.J.; SCHWARZ, K.R.L.; MAZIERO, R.R.D.; GUASTALI, M.D.; CROCOMO, L.F.; MAGALHÃES, L.C.O.; MARTINS, A. JR.; LEAL, C.L.V.; LANDIM-ALVARENGA, F.D.C. Cell apoptosis and lipid content of in vitro-produced, vitrified bovine embryos treated with forskolin. Theriogenology. v.1; p.87:108-114, 2017. Available from: < https://pubmed.ncbi.nlm.nih.gov/27634395/> Accessed: 03/03/22. doi: 10.1016/j.theriogenology.2016.08.011

PANYABORIBAN, S.; THARASANIT, T.; CHANKITISAKUL, V.; SWANGCHAN-UTHAI, T.; TECHAKUMPHU, M. Treatment with chemical delipidation forskolin prior to cryopreservation improves the survival rates of swamp buffalo (Bubalus bubalis) and bovine (Bos indicus) in vitro produced embryos. Cryobiology. v.84, p.46-51, 2018. Available from: <https://pubmed.ncbi.nlm.nih.gov/30092172/ > Accessed: 21/02/22. doi: 10.1016/j.cryobiol.2018.08.003.

RODRIGUES, C. & ZIEGELMANN, P. Metanálise: um guia prático. Revista Clinical & Biomedical Research. v.30(4), p.435-446, 2010. Available from: < https://seer.ufrgs.br/index.php/hcpa/article/view/16571> Accessed: 20/02/22.

SANCHES, B.V.; MARINHO, L.S.; FILHO, B.D.; PONTES, J.H.; BASSO, A.C.; MEIRINHOS, M.L.; SILVA-SANTOS, K.C.; FERREIRA, C.R.; SENEDA, M.M. Cryosurvival and pregnancy rates after exposure of IVF-derived Bos indicus embryos to forskolin before vitrification. Theriogenology. v.1;80(4), p.372-7, 2013. Available from: < https://pubmed.ncbi.nlm.nih.gov/23746692/> Accessed: 19/02/22. doi: 10.1016/j.theriogenology.2016.08.011

SEIDEL, G.E. Modifying oocytes and embryos to improve their cryopreservation. Theriogenology, v.65, n.1, p. 228–35, 2006. Available from: < https://pubmed.ncbi.nlm.nih.gov/16263160/ > Accessed: 08/04/22. Doi: 10.1016/j.theriogenology.2005.09.025

SUDANO, M.J.; PASCHOAL, D.M.; RASCADO T.D.S. et al. Lipid content and apoptosis of in vitro-produced bovine embryos as determinants of susceptibility to vitrification. Theriogenology, v.75, n.7, p.1211–20, 2011. Available from: < https://pubmed.ncbi.nlm.nih.gov/21247620/ > Accessed: 04/03/22. doi: 10.1016/j.theriogenology.2010.11.033

SUTTON, A. J.; ABRAMS, K. R.; JONES, D. R.; SHELDON, T. A.; &AMP; SONG, F. Methods for meta-analysis in medical research. 2000.

VIANA, J. Statistics of embryo production and transfer in domestic farm animals. International Embryo Technology Society, v. 36, n. 4, pág. 8-25, 2018. Available from: <https://www.iets.org/Portals/0/Documents/Public/Committees/DRC/IETS_Data_Retrieval_Report_2018.pdf > Accessed: 29/03/22

YIN, H.; SANCHETI, Z.; LIU, E. Cadenas Mitochondrial function in ageing: coordination with signalling and transcriptional pathways J. Physiological. 2015. Available from: < https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4933098/> Accessed: 22/02/22. doi:10.1113/JP270541

Downloads

Published

2023-10-03

How to Cite

Aschenbrenner, G. A., Weiss, R. R., Bergstein-Galan, T. G., Souza, F. A., de Lara, N. S. S., & Julio, V. B. (2023). META-ANALYSIS OF THE ACTION OF FORSKOLIN DURING IN VITRO CULTURE OF BOVINE EMBRYOS AND ITS IMPLICATION ON CRYOPRESERVATION. Archives of Veterinary Science, 28(3). https://doi.org/10.5380/avs.v28i3.90495

Issue

Section

Animal Reproduction