Uso de Dexmedetomidina injetável na forma de colírio associada á Dorzolamida para o tratamento do glaucoma em cães
DOI:
https://doi.org/10.5380/avs.v30i4.99797Palavras-chave:
pressão intraocular, reposicionamento farmacológico, oftalmologia, agonista alfa-2Resumo
Este estudo investigou a eficácia do uso tópico isolado do colírio de dorzolamida 2% três vezes ao dia em comparação com a associação da dexmedetomidina 100 µg/ml, originalmente formulada para uso injetável e aplicada topicamente duas vezes ao dia, associada ao uso de colírio de dorzolamida 2% três vezes ao dia, na redução da pressão intraocular (PIO) em cães diagnosticados com glaucoma. Um total de 29 cães com glaucoma e PIO superior a 25 mmHg foram selecionados com base em critérios clínicos específicos da condição. Os cães foram divididos em dois grupos, sendo o Grupo 1 (DORZO) composto por 12 animais, recebendo apenas colírio de dorzolamida 2% a cada oito horas, e o Grupo 2 (DEX DORZO) composto por 17 animais, recebendo colírio de dorzolamida 2% a cada oito horas associado à aplicação tópica de dexmedetomidina 100 µg/ml a cada doze horas. A aferição da PIO de todos os animais foi realizada no dia da primeira avaliação clínica e novamente após 7 e 30 dias do início do tratamento. Foram avaliados parâmetros vitais como frequência cardíaca, frequência respiratória e pressão arterial sistólica antes da aplicação tópica da dexmedetomidina e 30 minutos após a sua instilação. Os resultados demonstraram uma redução significativa da PIO nos olhos tratados tanto com dorzolamida isolada (DORZO) como com a combinação de dexmedetomidina e dorzolamida (DEX DORZO). O grupo DEX DORZO teve uma média de redução de 35,99% (p = 0,0012) da PIO ao fim dos 30 dias de avaliação em comparação com os olhos tratados apenas com dorzolamida, onde se observou uma média de redução de 20,32% (p = 0,6026). Não houve diferença significativa nos parâmetros vitais avaliados, assim como não foram observados casos de blefaroespasmo ou hiperemia após a administração das medicações em nenhum dos grupos. Conclui-se, portanto, que a administração tópica de dexmedetomidina duas vezes ao dia, em associação com o colírio de dorzolamida, pode ser uma abordagem eficaz e segura para reduzir a PIO em cães com glaucoma. Esses resultados sugerem a possibilidade de utilizar a dexmedetomidina como uma opção terapêutica adicional no tratamento do glaucoma em cães, devido à sua ação alfa-2 agonista-adrenérgica e à ausência de efeitos adversos significativos.
Referências
Abdelhamid AM, Mahmoud AAA, Abdelhaq MM, et al. Dexmedetomidine as an additive to local anesthetics compared with intravenous dexmedetomidine in peribulbar block for cataract surgery. Saudi Journal of Anesthesia, 10(1);50-54, 2016.
Alm A, Nilsson SFE. Uveoscleral outflow – A review. Experimental Eye Research. 88(4);760-768, 2009.
Arthur S, Cantor LB. Update on the Role of Alpha-Agonists in Glaucoma Management. Experimental Eye Research, 93;271-283, 2011.
Artigas C, Redondo JI, López-Murcia M. Effects of intravenous administration of dexmedetomidine on intraocular pressure and pupil size in clinically normal dogs. Veterinary Ophthalmology, 15(1);79-82, 2012
Banga PK, Singh DK, Dadu S, et al. A comparative evaluation of the effect of intravenous dexmedetomidine and clonidine on intraocular pressure after suxamethonium and intubation. Saudi Journal of Anesthesia, 9(2);179-183, 2015.
Bencurova DM, Vyborny P, Dankova P. Comparative analysis of tear cytokines in patients with glaucoma, ocular hypertension, and healthy controls. International Ophthalmology, 43:3559-3568, 2023.
Brioschi FA, Gioeni D, Jacchetti A, et al. Effect of metoclopramide on nausea and emesis in dogs premedicated with morphine and dexmedetomidine. Veterinary Anaesthesia and Analgesia, 45(2);190-194, 2018.
Cantor LB. Brimonidine in the treatment of glaucoma and ocular hypertension. Therapeutics and Clinical Risk Management, 2(4):337-343, 2006.
Cawrse MA, Ward DA, Hendrix DVH. Effects of topical application of a 2% solution of dorzolamide on intraocular pressure and aqueous humor flow rate in clinically normal dogs. American Journal of Veterinary Research, 62(6);859-863, 2001.
Chrysostomou C, Schmitt CG. Dexmedetomidine: sedation, analgesia and beyond. Expert Opinion on Drug Metabolism & Toxicology, 4;619-627, 2008.
Cohen J. Statistical power analysis for the behavioral sciences (2nd ed.). Lawrence Erlbaum Associates, 1988.
Fakhoury H, Abdelmassih Y, El-Khoury S, et al. Effect of Topical Dexmedetomidine (0.0055%) on Intraocular Pressure in Healthy Eyes: A Randomized Controlled Trial. Journal of Current Glaucoma Practice, 15(2);58-63, 2021.
Flammer J, Mozaffarieh M. What Is the Present Pathogenetic Concept of Glaucomatous Optic Neuropathy? Survey of Ophthalmology, 52, Suppl. 2; S162-S173, 2007.
Gelatt KN, MacKay E.O. Effect of different dose schedules of latanoprost on intraocular pressure and pupil size in the glaucomatous Beagle. Veterinary Ophthalmology, 4(4);283–288, 2001.
Gelatt KN, MacKay EO. Effect of single and multiple doses of 0.2% brimonidine tartrate in the glaucomatous Beagle. Veterinary Ophthalmology, 5(4);253-262, 2002.
Gelatt KN, Mackay EO. Prevalence of the breed-related glaucomas in pure-bred dogs in North America. Veterinary Ophthalmology, 7(2);97-111, 2004.
Gertler R, Brown C, Mitchell DH, et al. Dexmedetomidine: a novel sedative-analgesic agent. Baylor University Medical Center Proceedings, 14;13-21, 2001.
Goel M, Picciani RG, Lee RK, et al. Aqueous humor dynamics: a review. The open ophthalmology journal, 4;52-59, 2010.
Holló G. The side effects of the prostaglandin analogues. Expert Opinion on Drug Safety, 6(1);45–52, 2007
Honjo M, Inatani M, Kido N, et al. Effects of protein kinase inhibitor, HA1077, on intraocular pressure and outflow facility in rabbit eyes. Archives of Ophthalmology, 119(8);1171–1178, 2001.
Honjo M, Tanihara H, Inoue T, et al. Rho-kinase inhibitors as emerging targets for glaucoma therapy. Ophthalmology, 122(8); 1830-1838, 2015.
Ingram CJ, Brubaker RF. Effect of brinzolamide and dorzolamide on aqueous humor flow in human eyes. American Journal of Ophthalmology, 128(3);292–296, 1999.
Jaakola ML, Melkkila TA, Kanto J, et al. Dexmedetomidine reduces intraocular pressure, intubation responses, and anaesthetic requirements in patients undergoing ophthalmic surgery. British Journal of Anaesthesia, 68;570-575, 1992.
Jayanetti V, Sandhu S, Lusthaus JA. The Latest Drugs in Development That Reduce Intraocular Pressure in Ocular Hypertension and Glaucoma. Journal of Experimental Pharmacology, 12;539-548, 2020.
Kim Y, Lee H, Park J, et al. HL3501, a novel selective A3 adenosine receptor antagonist, lowers intraocular pressure in animal glaucoma models. Investigative Ophthalmology & Visual Science, 63(13); 5731-5742, 2022.
Komáromy AM, Bras D, Esson DW, et al. The future of canine glaucoma therapy. Veterinary Ophthalmology, 22(5);726-740, 2019.
Komnenou AA, Mylonakis ME, Kouti V, et al. Ocular manifestations of natural Canine Monocytic Ehrlichiosis (Ehrlichia canis): a retrospective study of 90 cases. Veterinary Ophthalmology, 10(3);137-142, 2007.
Leiva M, Naranjo C, Peña MT. Ocular signs of Canine Monocytic Ehrlichiosis: A retrospective study in dogs from Barcelona, Spain. Veterinary Ophthalmology, 8(6); 387-393, 2005.
Li G, Zhang L, Wu X, et al. Trabodenoson, an adenosine mimetic with A₁ receptor selectivity, lowers intraocular pressure by increasing conventional outflow facility in mice. Investigative Ophthalmology & Visual Science, 59(1); 383-392, 2018.
MacDonald E, Vartiainen J, Jasberg K. Systemic absorption and systemic effects of ocularly administered dexmedetomidine in rabbits. Current Eye Research, 12(5);451-460, 1993.
Maggio F, Bras D. Surgical treatment of canine glaucoma: Filtering and End-Stage Glaucoma Procedures. Veterinary Clinics of North America: Small Animal Practice, 45;1261-1282, 2015.
Mattos-Junior E, Pypendop BH, Cabrini TM, et al. Effects of dexmedetomidine alone or in combination with opioids on intraocular pressure in healthy Beagle dogs. Veterinary Anaesthesia na Analgesia, 48(4);541-544, 2021.
Mowafi HA, Aldossary N, Ismail AS, et al. Effect of dexmedetomidine premedication on the intraocular pressure changes after succinylcholine and intubation. British Journal of Anaesthesia, 100(4);485-489, 2008.
Oh DJ, Martin JL, Williams AJ, et al. Analysis of expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in human ciliary body after latanoprost. Investigative Ophthalmology &Visual Science, 47(3);953–963, 2006.
Pal CK, Ray M, Sen A, et al. Changes in intraocular pressure following administration of suxamethonium and endotracheal intubation: Influence of dexmedetomidine premedication. Indian Journal of Anesthesia, 55(6);573-577, 2011.
Pegu J, Purang AK, Dubery S, et al. Effect of dexmedetomidine on intraocular pressure as an additive in peribulbar block during glaucoma surgery. Indian Journal of Ophthalmology, 69 (6), 612-616, 2020.
Plummer CE, MacKay EO, Gelatt KN. Comparison of the effects of topical administration of a fixed combination of dorzolamide-timolol to monotherapy with timolol or dorzolamide on IOP, pupil size, and heart rate in glaucomatous dogs. Veterinary Ophthalmology, 9(4);245–9, 2006.
Plummer CE, Regnier A, Gelatt KN. The canine glaucomas. In: Gelatt KN, Gilger BC, Kern TJ, eds. Veterinary Ophthalmology, vol 2, 5th edition. Ames, IA: John Wiley Inc;1050-1145, 2013.
Quigley HA, Bowman AT. The number of people with glaucoma worldwide in 2010 and 2020. British Journal of Ophthalmology, 90;262-267, 2006.
Quigley HA, Pitha I, Welsbie DS, et al. Losartan treatment protects retinal ganglion cells and alters scleral remodeling in experimental glaucoma. Investigative Ophthalmology & Visual Science, 56(7); 4149-4161, 2015.
Rao PV, Deng P, Kumar, J, et al. Modulation of aqueous humor outflow facility by the Rho kinase–specific inhibitor Y-27632. Investigative Ophthalmology & Visual Science, 42(5);1029–1037, 2001.
Reitsamer HA, Kiel JW. Relationship between ciliary blood flow and aqueous production in rabbits. Investigative Ophthalmology & Visual Science, 44(9);3967-3971, 2003.
Reitsamer HA, Posey M, Kiel JW. Effects of a topical alpha2 adrenergic agonist on ciliary blood flow and aqueous production in rabbits. Experimental Eye Research, 82(3);405-415, 2005.
Richter M, Krauss AH, Woodward DF, et al. Morphological changes in the anterior eye segment after long-term treatment with different receptor selective prostaglandin agonists and a prostamide. Investigative Ophthalmology and Visual Science, 44(10);4419–26, 2003.
Roy Chowdhury U, Brackett D, Hong H, et al. Pharmacological profile and ocular hypotensive effects of Cromakalim Prodrug 1 (CKLP1), a novel ATP-sensitive potassium channel opener, in normotensive dogs and non-human primates. Journal of Ocular Pharmacology and Therapeutics, 37(5);251-260, 2021.
Roy Chowdhury U, Brackett D, Hong H, et al. Effect of ATP-sensitive potassium channel openers on intraocular pressure in ocular hypertensive animal models. Investigative Ophthalmology & Visual Science, 63(2);15, 2022.
Sambhara D, Aref AA. Glaucoma management: relative value and place in therapy of available drug treatments. Therapeutic Advances in Chronic Disease, 5(1);30–43, 2014.
Senthil S, Burugupally K, Rout U, et al. Effect of Intravenous Dexmedetomidine on Intraocular Pressure in Patients Undergoing Glaucoma Surgery Under Local Anesthesia: A Pilot Study. Journal of Glaucoma, 29(10);846-850, 2020.
Sinclair MD. A review of the physiological effects of alpha2-agonists related to the clinical use of medetomidine in small practice. The Canadian Veterinary Journal, 44(11);885-897, 2003.
Skaat, A, Rosman, MS, Chien JL. Effect of pilocarpine hydrochloride on the Schlemm canal in healthy eyes and eyes with open-angle glaucoma. Journal of the American Medical Association Ophthalmology, 134(9);976–981, 2016.
Stamer WD, Piwnica D, Jolas T, et al. Cellular basis for bimatoprost effects on human conventional outflow. Investigative Ophthalmology & Visual Science, 51(10);5176–5181, 2010.
Studer ME, Martin CL, Stiles J. Effects of 0.005% latanoprost solution on intraocular pressure in healthy dogs and cats. American Journal of Veterinary Research, 61(10);1220–1224, 2000.
Sugrue MF. The preclinical pharmacology of dorzolamide hydrochloride, a topical carbonic anhydrase inhibitor. Journal of Ocular Pharmacology and Therapeutics, 12(3);363-376, 1996.
Sugrue MF. Pharmacological and ocular hypotensive properties of topical carbonic anhydrase inhibitors. Progress in Retinal and Eye Research, 19(1);87-112, 2000.
Tanna AP, Johnson MR. Rho kinase inhibitors as a novel treatment for glaucoma and ocular hypertension. Ophthalmology, 125(11);1741–1756, 2018.
Tham YC, Li X, Wong TY, et al. Global Prevalence of glaucoma and projections of glaucoma burden through 2040. Ophthalmology, 121(11);2081-2090, 2014.
Vartiainen J, MacDonald E, Urtti A, et al. Dexmedetomidine-Induced Ocular Hypotension in Rabbits with Normal or Elevated Intraocular Pressures. Investigative Ophthalmology & Visual Science, 33(6);2019-2023, 1992.
Villela NR, Nascimento JR P. Uso de dexmedetomidina em anestesiologia. Revista. Brasileira de Anestesiologia, 53;97-113, 2003.
Vohra R, Tsai JC, Kolko M. The role of inflammation in the pathogenesis of glaucoma. Survey of Ophthalmology, 58(4);311-320, 2012.
Waters, H., Johnson, A., Smith, R., et al. Topical trabodenoson is neuroprotective in a rodent model of anterior ischemic optic neuropathy. Translational Vision Science & Technology, 8(6); 47, 2019.
Webb TER. A review of glaucoma surgical therapy. Veterinary Ophthalmology, 24(S1);34-38, 2021.
Weinreb RN, Aung T, Medeiros FA. The Pathophysiology and Treatment of Glaucoma: A Review. Journal of the American Medical Association, 311(18);1901-1911, 2014.
Whelan NC, Welch P, Pace A, et al. A comparison of the efficacy of topical brinzolamide and dorzolamide alone and in combination with oral methazolamide in decreasing normal canine intraocular pressure. 30th Annual Meeting of the American College of Veterinary Ophthalmologists. Chicago (IL), October 1999.
Wilkie DA, Latimer CA. Effects of topical administration of timolol maleate on intraocular pressure and pupil size in dogs. American Journal of Veterinary Research, 52(3);432–435, 1991.
Zimmerman, T.J. Topical ophthalmic beta blockers: a comparative review. Journal of Ocular Pharmacology and Therapeutics, 9(4);373–384, 1993.
Publicado
Como Citar
Edição
Seção
Licença

Este trabalho está licenciado sob uma licença Creative Commons Attribution-ShareAlike 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Creative Commons - Atribuição 4.0 Internacional que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.











