ASSESSING WIND DIRECTION DIVERGENCE IN RELATION TO URBAN AREAS: A GIS METHODOLOGICAL FRAMEWORK
DOI:
https://doi.org/10.5380/raega.v64i1.101795Resumo
This study presents a methodology within a Geographic Information System (GIS) environment to evaluate the divergence of wind direction in relation to urban areas, with the objective of supporting the location of odor-generating facilities. The approach was organized into three main stages: obtaining the prevailing wind direction from interpolated raster data; calculating the orientation of each pixel relative to the nearest urban area; and comparing these directions through a function that computes the smallest angular difference adjusted within the range of 0° to 180°. The analysis produced a raster dataset that allows the identification of areas of greater convergence, where potential impacts on urban zones are more significant, and areas of greater divergence, more suitable for the location of facilities. The color-scale representation facilitated visual interpretation, distinguishing unfavorable and favorable regions for the location of odor-generating facilities. The approach demonstrates practical applicability for guiding the location of wastewater treatment plants, landfills, and industries, contributing to the mitigation of environmental and social impacts and providing support for sustainable urban planning policies.
Referências
ALKHALIDI, M.; AL-DABBOUS, A.; AL-DABBOUS, S.; ALZAID, D. Evaluating the Accuracy of the ERA5 Model in Predicting Wind Speeds Across Coastal and Offshore Regions. Journal of Marine Science and Engineering, 13, 149, 2025. https://doi.org/10.3390/jmse13010149.
AMARANTE, O. A. C.; BROWER, M.; ZACK, J.; SÁ, A. L. Atlas do potencial eólico brasileiro. Brasília: Ministério de Minas e Energia, 2001.
AMKIEH, Y. K. Odor pollution assessment in residential urban spaces in Tripoli city. Architecture and Planning Journal (APJ), v. 26, n. 2, p. 2, 2020.
BERNARD, J.; LINDBERG, F.; OSWALD, S. URock 2023a: an open-source GIS-based wind model for complex urban settings. Geoscientific Model Development, v. 16, n. 20, p. 5703-5727, 2023.
CANHA, N.; JUSTINO, A. R.; GAMELAS, C. A.; ALMEIDA, S. M. Citizens’ perception on air quality in Portugal—how concern motivates awareness. International Journal of Environmental Research and Public Health, MDPI, v. 19, n. 19, p. 12760, 2022.
COPERNICUS CLIMATE CHANGE SERVICE (C3S). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data Store (CDS), 2017. Disponível em: https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview.
ELTARKAWE, M.; MILLER, S. Industrial odor source identification based on wind direction and social participation. International Journal of Environmental Research and Public Health, MDPI, v. 16, n. 7, p. 1242, 2019.
HOSSEINZADEH, F.; MOMENI, A.; BAGHERI, R. Site selection for municipal solid waste landfill in coastal area by combining GIS-AHP methods: A case study in East of Mazandaran Province, Iran. Iranian Journal of Science and Technology, Transactions of Civil Engineering, Springer, v. 48, n. 1, p. 511–524, 2024.
LEE, S.; WOLBERG, G.; SHIN, S. Y. Scattered Data Interpolation with Multilevel B-Splines. IEEE Transactions On Visualisation and Computer Graphics, v. 3, n. 3, 1997.
LEWKOWSKA, P.; CIEŚLIK, B.; DYMERSKI, T.; KONI- ECZKA, P.; NAMIEŚNIK, J. Characteristics of odors emitted from municipal wastewater treatment plant and methods for their identification and deodorization techniques. Environmental Research, Elsevier, v. 151, p. 573–586, 2016.
LEWIS, B. S.; NOGUEIRA, I. C. M.; CARVALHO, N. V. D.; MENEZES, W. F. D. Impactos associados à resolução dos modelos atmosféricos em modelos de prognósticos de ondas. Boletim de Ciências Geodésicas, v. 23, n. 4, p. 539-555, 2017.
LI, R. Y. M.; LI, H.; CHING Y. Have housing prices gone with the smelly wind? big data analysis on landfill in Hong Kong. Sustainability, MDPI, v. 10, n. 2, p. 341, 2018.
LUCKERT, A.; AGUADO, D.; GARCÍA-BARTUAL, R.; LAFITA, C.; MONTOYA, T.; FRANK, N. Odour mapping and air quality analysis of a wastewater treatment plant at a seaside tourist area. Environmental Monitoring and Assessment, Springer, v. 195, n. 8, p. 1013, 2023.
IOWA ENVIRONMENTAL MESONET (IEM). Annual Wind Rose for Presidente Prudente. Iowa State University, 2025. Disponível em: https://mesonet.agron.iastate.edu/sites/site.php?network=BR__ASOS&station=SBDN.
MOUMANE, A.; AL KARKOURI, J.; BATCHI, M. Utilizing GIS, remote sensing, and AHP-multi-criteria decision analysis for optimal landfill site selection in Kenitra Province, Morocco: a step towards sustainable development goals. Discover Environment, v. 3, n. 4, 2025. https://doi.org/10.1007/s44274-025-00183-0.
RIBEIRO, V. O.; CORREA, N. F.; CARVALHO, L. A.; PARANHOS FILHO, A. C. Identificação de área para a instalação de estação de tratamento de esgoto em Coronel Sapucaia (MS), utilizando álgebra de mapas. Anuário do Instituto de Geociências, v. 41, n. 2, p. 685–698, 2018.
SHAHMORADI, B.; ISALOU, A. -A. Site selection for wastewater tre- atment plant using integrated fuzzy logic and multicriteria decision model: A case study in Kahak, Iran. Journal of Advances in Environmental Health Research, Kurdistan University of Medical Sciences, v. 1, n. 1, p. 51–61, 2013.
SILVA, A. F. G.; ZAPAROLI, E. L.; FISCH, G. Uma Análise da Aplicação de Três Métodos Estatísticos para o Cálculo do Desvio Padrão da Direção do Vento na Região Tropical. Revista Brasileira de Meteorologia, v. 31, n. 1, p. 45-51, 2016.
SNIS. Diagnóstico Temático Serviços de Água e Esgoto. 2022. Disponível em: http://app4.mdr.gov.br/serieHistorica/. Acesso em: 08 nov. 2022.
SORTE, S.; ARUNACHALAM, S.; NAESS, B.; SEPPANEN, C.; RODRIGUES, V.; VALENCIA, A.; BORREGO, C.; MON- TEIRO, A. Assessment of source contribution to air quality in an urban area close to a harbor: Case-study in Porto, Portugal. Science of The Total Environment, Elsevier, v. 662, p. 347–360, 2019.
SOUZA JUNIOR, C. M.; SHIMBO, J. Z.; ROSA, M. R.; PARENTE, L. L.; ALENCAR, A. A.; RUDORFF, B. F. T.; HASENACK, H.; et al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine. Remote Sensing, MDPI, v. 12, n. 17, p. 2735, 2020.
UNITED NATIONS [UN]. Agenda 2030 for Sustainable Development: the 17 Sustainable Development Goals. 2015. Disponível em: https://sdgs.un.org/goals
YILDIRIM, V.; UZUN, B.; BAYKAL, T. M.; TERZI, F.; ATASOY, B. A. Odor-aided analysis for landfill site selection: study of Dokap region, Turkey. Environmental Science and Pollution Research, Springer, p. 1–17, 2022.
WONG, M. S.; NOCHOL, J. E.; NG, E. Y. Y.; GUILBERT, E.; KWOK, K. H.; TO, P. H.; WANG, J. Z. GIS Techniques for mapping urban ventilation, using frontal area index and least cost path analysis. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci, v. 38, p. 586-591, 2010.
ZHOU, Y.; SONG, Y.; LI, S.; QIN, W.; SUN, J. A location selection method for wastewater treatment plants integrating dynamic change of water ecosystem and socio-cultural indicators: A case study of Phnom Penh. Water, MDPI, v. 14, n. 22, p. 3637, 2022.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Declaro que o ARTIGO submetido é INÉDITO, ORIGINAL e de MINHA RESPONSABILIDADE. Declaro que o artigo não foi submetido ou está em avaliação em outra revista/periódico.
Estou ciente dos itens presentes na LEI Nº 9.610/98 (DIREITOS AUTORAIS) e me responsabilizo por quaisquer problemas relacionados a PLÁGIO.
Estou ciente de que o artigo submetido poderá ser removido da Revista, caso se observe A QUALQUER TEMPO que ele se encontra publicado integralmente ou em parte em outro PERIÓDICO científico.
Declaro, COMO PRIMEIRO AUTOR, que os demais autores do trabalho estão cientes desta submissão e de que NÃO receberão qualquer tipo de remuneração pela divulgação do trabalho.
Como primeiro autor, autorizo, de antemão, a RA’E GA - O Espaço Geográfico em Análise(ISSN 2177-2738), a publicar o artigo, caso aceito.
