Ajuste inferencial en las Relaciones Internacionales (2010-2023)

Autores/as

DOI:

https://doi.org/10.5380/cg.v14i2.98969

Palabras clave:

Pluralismo inferencial, Estudio de caso, Relaciones internacionales, Metodología politica, Diseño de investigación.

Resumen

El artículo busca comprender el efecto del Ajuste Inferencial en la producción de un factor de alto impacto en el campo de las Relaciones Internacionales (RI) durante la última década. La RI representa un caso en el que las estrategias inferenciales impulsadas por la causalidad inversa se vuelven dominantes. La razón fundamental de esta condición constitutiva puede explicarse en gran medida por la primacía de las teorías institucionales, hecho que conduce a un claro movimiento hacia la revitalización del estatus inferencial de los estudios de casos, lo que va en contra de la tendencia conductual dominante exhibida por la Ciencia Política (CP). El argumento central es que la producción de RI debe verse como una tabla inferencial separada que preserva especificidades importantes en relación con la CP.

Biografía del autor/a

Flávio da Cunha Rezende, Universidad Federal de Pernambuco

Profesor titular de la Universidad Federal de Pernambuco, flavio.rezende@ufpe.br, ORCID: 0009-0003-2576-8032. 

Caio Gomes Brandão Rios, Universidad Federal de Pernambuco

Estudiante de doctorado en Ciencia Política en la Universidad Federal de Pernambuco, caio.rios@ufpe.br, ORCID: 0009-0009-4436-2226.

Citas

AI, C.; NORTON, E. C. Interaction Terms in Logit and Probit Models. Economics Letters, vol. 80, n. 1, p. 123-129, 2003.

ALMOND, G. Separate Tables: Schools and Sects in Political Science. PS: Political Science and Politics, vol. 21, n. 4, p. 828–842, 1988.

ANGRIST, J. D.; PISCHKE, J.-S. Mostly Harmless Econometrics: An Empiricist Companion. New Jersey: Princeton University Press, 2009.

ASHWORTH, S.; BERRY, C. R.; MESQUITA, E. B. Theory and Credibility: Integrating Theoretical and Empirical Social Science. New Jersey: Princeton University Press, 2021.

BEACH, D.; PEDERSEN, R. B. Process-Tracing Methods: Foundations and Guidelines. [s.l.] Ann Arbor. The University of Michigan Press, 2013.

BECK, N. Taking Time Seriously: Time-Series-Cross-Section Analysis with a Binary Dependent Variable. American Journal of Political Science, vol. 42, n. 4, p. 1260-1288, 1998.

BECK, N.; KATZ, J. N. What to Do (And Not to Do) with Time-Series Cross-Section Data. American Political Science Review, vol. 89, n. 3, p. 634-647, 1995.

BOX-STEFFENSMEIER, J. M.; BRADY, H. E.; COLLIER, D. Political Science Methodology”. Em: BOX-STEFFENSMEIER, J. M.; BRADY, H. E.; COLLIER, D. (Eds.). The Oxford Handbook of Political Methodology. Chapter 1. p. 3–31, 2008

BOX-STEFFENSMEIER, J. M.; JONES, B. S. Event History Modeling: A Guide for Social Scientists. Cambridge, UK: Cambridge University Press, 2004.

BRADY, H. E.; COLLIER, D. Rethinking Social Inquiry: Diverse Tools, Shared Standards. New York: Rowman & Littlefield Publishers, Inc, 2004.

BRAMBOR, T.; CLARK, W. R.; GOLDER, M. Understanding Interaction Models: Improving Empirical Analyses. Political Analysis, vol. 14, n. 1, p. 63-82, 2006.

CARTER, D. B.; SIGNORINO, C. S. Back to The Future: Modeling Time Dependence in Binary Data. Political Analysis, vol. 18, n. 3, p. 271-292, 2010.

CLARKE, K. A.; PRIMO, D. M. A Model Discipline: Political Science and the Logic of Representations. New York: Oxford University Press, 2012.

COPPEDGE, M. Democratization and Research Methods. New York: Cambridge University Press, 2012.

DE BOEF, S.; KEELE, L. Taking Time Seriously. American Journal of Political Science, vol. 52, n. 1, p. 184-200, 2008.

DE PAULA, J. C. G. Em busca da Inferência Válida: métodos e testes de hipóteses nos estudos legislativos brasileiros. Métodos e Metodologias, s/v, n. 26, p. 273-311 2018.

DRUCKMAN, J. N. et al. The Growth and Development of Experimental Research in Political Science. American Political Science Review, vol. 100, n. 4, p. 627–635, 2006.

DUNNING, T. Improving Causal Inference: Strenghts and Limitations of Natural Experiments. Political Research Quarterly, vol. 61, n. 2, p. 282–293, 2008.

GEORGE, A. L.; BENNETT, A. Case Study and Theory Development in the Social Sciences. Cambridge, MA: MIT Press, 2005.

GERBER, A.; P.GREEN, D.; KAPLAN, E. H. The Illusion of Learning from Observational Research”. New York: Cambridge University Press, 2004.

GERRING, J. What is a Case Study and What it is good for? American Political Science Review, vol. 98, n. 2, p. 341–354, 2004.

GERRING, J. Case Study Research: Principles and Practices. New York: Cambridge University Press, 2007.

GREENACRE, M. Correspondence Analysis in Practice. Chapman and Hall/CRC, 2007

GREENE, W. H. Econometric Analysis. Upper Saddle River, NJ: Prentice Hall, 2000.

GRIMMER, J.; STEWART, B. M. Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts. Political Analysis, vol. 21, n. 3, p. 267–297, 2013.

HO, D. E. et al. Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference. Political Analysis, vol. 15, n. 3, p. 199-236, 2007.

IACUS, S. M.; KING, G.; PORRO, G. Causal Inference Without Balance Checking: Coarsened Exact Matching. American Journal of Political Science, vol. 20, n. 1, p. 1-24, 2012.

IMAI, L., Kosuke, Keele; TINGLEY, D. Unpacking The Black Box Of Causality: Learning about Causal Mechanisms From Experimental and Observational Studies. American Political Science Review, vol. 105, n. 4, p. 765-789, 2011.

KEELE, L. The Statistics of Causal Inference: a View from Political Methodology. Political Analysis, vol. 23, n. 3, p. 313–335, 2015.

KING, A., Gary, Honaker, James, Joseph; SCHEVE, K. Analyzing Incomplete Political Science Data: an Alternative Algorithm for Multiple Imputation. American Political Science Review, vol. 95, n. 1, p. 49–69, 2001.

KING, G. Unifying Political Methodology: The Likelihood Theory of Statistical Inference. Cambridge: Cambridge University Press, 1989.

KING, G.; EPSTEIN, L. The Rules of Inference. University of Chicago Law Review, vol. XXX, n. 1, p. 1–93, 2002.

KING, G.; KEOHANE, R.; VERBA, S. Designing Social Inquiry: Scientific Inference in Qualitative Research. New Jersey: Princeton University Press, 1994.

KING, G.; ZENG, L. Logistic Regression in Rare Events Data. American Journal of Political Science, vol. 9, n. 2, p. 137–163, 2001.

LEYDESDORFF, L.; WAGNER, C. S.; BORNMANN, L. Interdisciplinarity as diversity in citation pattern among journals: Rao-Stirling diversity, relative variety, and the Gini Coefficient. Journal of Informetrics, vol. 13, p. 255–269, 2019.

LIEBERMAN, E. S. Causal Inference in Historical Institutional Analysis: A Specification of Periodization Strategies. Comparative Political Studies, vol. 34, n.9, 1011-1035, 2001.

LIEBERMAN, E. S. Nested Analysis as a Mixed-Method Strategy for Comparative Research. American Political Science Review, vol. 99, n. 3, p. 435–452, 2005.

LONG, J. S. Regression Models for Categorical and Limited Dependent Variables. Thousand Oaks, CA: Sage Publications, 1997.

LONG, J. S.; FREESE, J. Regression Models for Categorical Dependent Variables Using Stata. College Station, TX: Stata Press, 2006.

LOTKA, A. J. Elements of Physical Biology. Baltimore: Williams & Wilkins, 1926.

MAHONEY, J.; GOERTZ, G. A Tale of Two Cultures: Contrasting Quantitative and Qualitative Research in the Social Sciences. New Haven. [s.l.] Princeton University Press, 2012.

MAHONEY, J.; TERRIE, L. Comparative-Historical Analysis in Contemporary Political Science. Em: The Oxford Handbook of Political Methodology. [s.l.] Oxford University Press, 2008. p. 737–755.

MCDERMOTT, R. Experimental Methodology in Political Science. Political Analysis, vol. 10, n. 4, p. 325–342, 2002.

MORTON, R. B. Methods and Models: A Guide to the Empirical Analysis of Formal Models in Political Science. New York: Cambridge University Press, 1999.

MORTON, R. B.; WILLIAMS, K. C. The Advent of Experimental Political Science”. In Experimental Political Science and the Study of Causality: From Nature to Lab. New York: Cambridge University Press, 2010.

PEPINSKY, T. B. The Return of the Single-Country Study. Annual Review of Political Science, vol. 22, p. 187–203, 2009.

PRZEWORSKI, A. Is The Science of Comparative Politics Possible?”. Em: BOIX, C.; STOKES, S. (Eds.). Oxford Handbook of Comparative Politics. New York: Cambridge University Press, 2007. p. 147–171.

RAGIN, C. C. The Comparative Method: Moving Beyond Qualitative and Quantitative Strategies. Berkeley: University of California Press, 1989.

RAGIN, C. C. Fuzzy-Set Social Science. Chicago: University of Chicago Press, 2000.

REZENDE, F. DA C. Desenhos de Pesquisa e Qualidade Inferencial na CP: o Modelo de Engrenagens Analíticas. Conexão Política, vol. 4, n. 2, p. 47–66, 2015a.

REZENDE, F. DA C. Transformações Metodológicas na CP. Revista Política Hoje, vol. 24, p. 13–45, 2015b.

REZENDE, F. DA C. R. O Pluralismo Inferencial na CP: Teoria e Evidências. Curitiba: Editora Appris, 2023.

REZENDE, F. DA C.; RIOS, C. G. B. Revitalizing the Inferential Status of Case Stories in Comparative Politics: Latin America in the Era of Causal Identification, 2000-2021. Revista Latinoamericana de Política Comparada, vol. 16, 2023.

SCHAEFERMEIER, B.; STUMME, G.; HANIKA, T. Topic Space Trajectories: A Case Study on Machine Learning Literature. Scientometrics, vol. 15, n. 3, p. 123–145, 2021.

SCHNEIDER, C. Q.; WAGEMAN, C. Set-Theoretical Methods for the Social Sciences: A Guide to Qualitative Comparative Analysis. New York: Cambridge University Press, 2012.

SPRINZ, D. F.; WOLINSKY-NAHMIAS, Y. (EDS.). Models, Cases and Numbers: methods for studying international relations. [s.l.] Ann Arbor. The University of Michigan Press, 2004.

STOKES, S. A Defense of Observational Research”. Em: TEELE, D. L. (Ed.). Field Experiments and its Critics: essays on the use and abuse of experimentation in the Social Sciences. The Yale ISPS Series. New Haven. [s.l.] Yale University Press, 2014, p. 33–57.

WOOLDRIDGE, J. M. Econometric Analysis of Cross Section and Panel Data. Cambridge, MA: MIT Press, 2002.

Publicado

2025-06-25

Cómo citar

Rezende, F. da C., & Rios, C. G. B. (2025). Ajuste inferencial en las Relaciones Internacionales (2010-2023) . Conjuntura Global, 14(2). https://doi.org/10.5380/cg.v14i2.98969