Assessment of Temporal Effects of Electroporation on CRISPR/Cas-Driven Gene Modifications in Buffalo Embryos
DOI:
https://doi.org/10.5380/avs.v30i1.96964Palavras-chave:
Mosaicism, Biallelic mutation, Gene editing, Electroporation, Buffalo.Resumo
Gene editing in buffalo faces challenges from mosaicism, where cells contain both wild-type and mutant alleles, complicating the creation of genetically modified animals in a single step. Traditionally, electroporation is done post in vitro fertilization (IVF) on zygotes, but the higher permeability of mature oocytes suggests earlier intervention could reduce mosaicism and improve editing efficiency. This study aimed to determine if electroporating buffalo oocytes at different stages during in vitro maturation (IVM) could improve biallelic mutation rates for three genes: KDR, GDF9, and POU5F1. Oocytes were electroporated at 44, 46, and 48 hours of IVM, and a control group of zygotes was electroporated 12 hours post-IVF. Each group received three gRNAs targeting the three genes. After electroporation, oocytes were fertilized and cultured to the blastocyst stage. The study assessed and compared blastocyst formation rates, mutation rates, and biallelic mutation occurrences across groups. Electroporation at 44 and 46 hours of IVM reduced blastocyst formation rates but did not significantly impact mutation or biallelic mutation rates compared to the control. Oocytes that were electroporated at 48 hours of IVM showed similar results to those that were electroporated post-IVF. This suggests that the timing of electroporation during IVM affects blastocyst formation but does not influence overall gene editing efficiency, offering a potential method for gene editing in buffalo without the need for IVF.
Referências
Belli M, Vigone G, Merico V, Redi CA, Garagna S, Zuccotti M, Time-lapse dynamics of the mouse oocyte chromatin organisation during meiotic resumption. BioMed Res Int., 2014. doi: 10.1155/2014/207357.
Chang N, Sun C, Gao L, Zhu D, Xu X, Zhu X, Xiong JW, Xi JJ, Genome editing with RNA-guided Cas9 nuclease in Zebrafish embryos. Cell Res., 2013. doi: 10.1038/cr.2013.45.
Civelek M, Lusis AJ, Systems genetics approaches to understand complex traits. Nat Rev Genet., 2014. doi: 10.1038/nrg3575.
Foulkes WD, Real FX, Many mosaic mutations. Curr Oncol., 2013. doi: 10.3747/co.20.1449.
Funahashi H, Polyspermic penetration in porcine IVM-IVF systems. Reprod Fertil Dev., 2003. doi: 10.1071/RD02076.
Hashimoto M, Yamashita Y, Takemoto T, Electroporation of Cas9 protein/sgRNA into early pronuclear zygotes generates non-mosaic mutants in the mouse. Dev Biol., 2016. doi: 10.1016/j.ydbio.2016.07.017.
Hirata M, Tanihara F, Wittayarat M, Hirano T, Nguyen NT, Le QA, Namula Z, Nii M, Otoi T, Genome mutation after introduction of the gene editing by electroporation of Cas9 protein (GEEP) system in matured oocytes and putative zygotes. In Vitro Cell Dev Biol Anim., 2019. doi: 10.1007/s11626-019-00338-3.
Im W, Moon J, Kim M, Applications of CRISPR/Cas9 for gene editing in hereditary movement disorders. J Mov Disord., 2016. doi: 10.14802/jmd.16029.
Kikuchi K, Nagai T, Motlik J, Shioya Y, Izaike Y, Effect of follicle cells on in vitro fertilization of pig follicular oocytes. Theriogenology, 1993. doi: 10.1016/0093-691X(93)90246-2.
Liu M, Research progress of CRISPR-Cas system application. Chron Dis Prev Rev., 2020; 15: 1-4.
Liu Y, Yu MC, Zhang AQ, Wang YB, Jiang K, Dong JH, Interleukin-10 gene promoter polymorphism and risk of liver cirrhosis. Genet Mol Res., 2015. doi: 10.4238/2015.February.13.1.
Marin DFD, de Souza EB, de Brito VC, Nascimento CV, Ramos AS, Filho STR, da Costa NN, Cordeiro MS, Santos SS, Ohashi OM, In vitro embryo production in buffaloes: From the laboratory to the farm. Anim Reprod., 2019. doi: 10.21451/1984-3143-AR2018-0135.
Michelizzi VN, Whole genome single nucleotide polymorphism (SNP) transfer from cattle to water buffalo. Available at: https://rex.libraries.wsu.edu/esploro/fulltext/graduate/Whole-genome-single-nucleotide-polymorphism-SNP/99900525285801842.
Nánássy L, Lee K, Jávor A, Macháty Z, Effects of activation methods and culture conditions on development of parthenogenetic porcine embryos. Anim Reprod Sci., 2008. doi: 10.1016/j.anireprosci.2007.01.019.
Nguyen TV, Tanihara F, Do LTK, Sato Y, Taniguchi M, Takagi M, Van Nguyen T, Otoi T, Chlorogenic acid supplementation during in vitro maturation improves maturation, fertilization and developmental competence of porcine oocytes. Reprod Domest Anim., 2017. doi: 10.1111/rda.13005.
Prescott MJ, Ethical and welfare implications of genetically altered non-human primates for biomedical research. J Appl Anim Ethics Res., 2020. doi: 10.1163/25889567-bja10002.
Punetha M, Kumar D, Saini S, Chaudhary S, Bajwa KK, Sharma S, Mangal M, Yadav PS, Green JA, Whitworth K, Datta TK, Optimising electroporation condition for CRISPR/Cas-mediated knockout in zona-intact buffalo zygotes. Animals, 2024. doi: 10.3390/ani14010134.
Singh B, Chauhan MS, Singla SK, Gautam SK, Verma V, Manik RS, Singh AK, Sodhi M, Mukesh M, Reproductive biotechniques in buffaloes (Bubalus bubalis): Status, prospects and challenges. Reprod Fertil Dev., 2009. doi: 10.1071/RD08172.
Singh B, Mal G, Kues WA, Yadav PS, The domesticated buffalo – An emerging model for experimental and therapeutic use of extraembryonic tissues. Theriogenology, 2020. doi: 10.1016/j.theriogenology.2020.04.003.
Suzuki T, Asami M, Perry ACF, Asymmetric parental genome engineering by Cas9 during mouse meiotic exit. Sci Rep., 2014. doi: 10.1038/srep07621.
Wongsrikeao P, Kaneshige Y, Ooki M, Taniguchi M, Agung B, Nii M, Otoi T, Effect of the removal of cumulus cells on the nuclear maturation, fertilization and development of porcine oocytes. Reprod Domest Anim., 2005. doi: 10.1111/j.1439-0531.2005.00576.x.
Wu X, Shen W, Zhang B, Meng A, The genetic program of oocytes can be modified in vivo in the zebrafish ovary. J Mol Cell Biol., 2018. doi: 10.1093/jmcb/mjy044.
Xu Y, Li Z, CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J., 2020. doi: 10.1016/j.csbj.2020.08.031.
Yadav DK, Kumar S, Choi EH, Kim MH, Electric-field-induced electroporation and permeation of reactive oxygen species across a skin membrane. J Biomol Struct Dyn., 2021. doi: 10.1080/07391102.2020.1730972.
Yang S, Li S, Li XJ, Shortening the half-life of Cas9 maintains its gene editing ability and reduces neuronal toxicity. Cell Rep., 2018. doi: 10.1016/j.celrep.2018.11.019.
Yang Z, Liu D, Enhanced transmembrane transport of reactive oxygen species by electroporation effect of plasma. Plasma Process Polym., 2021. doi: 10.1002/ppap.202100054.
Yoshida N, Brahmajosyula M, Shoji S, Amanai M, Perry ACF, Epigenetic discrimination by mouse metaphase II oocytes mediates asymmetric chromatin remodeling independently of meiotic exit. Dev Biol., 2007. doi: 10.1016/j.ydbio.2006.08.006.
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Archives of Veterinary Science

Este trabalho está licenciado sob uma licença Creative Commons Attribution-ShareAlike 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista o direito de primeira publicação, com o trabalho simultaneamente licenciado sob a Creative Commons - Atribuição 4.0 Internacional que permite o compartilhamento do trabalho com reconhecimento da autoria e publicação inicial nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (ex.: publicar em repositório institucional ou como capítulo de livro), com reconhecimento de autoria e publicação inicial nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (ex.: em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, já que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado.











