The The effect of epigallocatechin 3-gallate on body weight and abdominal fat of white rats (Rattus norvegicus) exposed to monosodium glutamate

Autores

DOI:

https://doi.org/10.5380/avs.v29i4.95789

Palavras-chave:

cardiovascular disease, epididymal, obesity, peritoneal, retroperitoneal

Resumo

Abstract: MSG can caused obesity that can affect metabolism in the body. The administration of EGCG can increase energy expenditure and metabolism. This study aimed to determine the effect of epigallocatechin 3-gallate (EGCG) on body weight and the percentage of abdominal fat of white rats (Rattus norvegicus) exposed to monosodium glutamate (MSG). Twenty-five rats were divided into five treatment groups. The C- group was given only aquadest and Sodium carboxymethyl cellulose (CMC-Na) 1%. The C+, T1, T2, and T3 groups were given MSG 120 mg/kg/BW and CMC-Na 1%, and EGCG at 4, 8, and 16 mg/kg/BW, respectively. All treatments were given orally for 28 days. The results showed that administration of MSG tends to be followed by an increase in body weight, except in group T2 where body weight was relatively stable. The administration of MSG 120 (to the C+ group) increased significantly (p<0.05) the percentage of epididymal fat and peritoneal fat. The administration of EGCG 8 (to the T2 group) significantly reduced (p<0.05) the percentage of retroperitoneal, epididymal, and peritoneal fat, compared to the group exposed to (C+ group). The percentage of retroperitoneal fat and epididymal fat was significantly lower (p<0.05), but the percentage of peritoneal fat was not significantly different (p>0.05) compared to normal mice (C-). The administration of EGCG 16 (to the T3 group) followed a significant increase (p<0.05) in retroperitoneal fat and epididymal fat, but the percentage of peritoneal fat was not significantly different (p>0.05), compared to (T2 group). It could be concluded that the administration of EGCG 8 mg/kg BW/day reduced the weight of retroperitoneal fat, epididymal fat, and peritoneal fat compared to mice given MSG alone. This research is expected to become the main reference for product processed from the substance EGCG which can reduce body weight and abdominal fat.

Keywords: cardiovascular disease, epididymal, obesity, peritoneal, retroperitoneal.

Referências

Bautista R.J.H., Mahmoud, A.M., Königsberg, M., Guerrero, N.E.L.D. (2019). Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomedicine & Pharmacotherapy, 111, 503-516. https://doi.org/10.1016/j.biopha.2018.12.108.

Bayram, H. M., Akgoz, H. F., Kizildemir, O. and Ozturkcan, A. (2022). Monosodium glutamate: review on preclinical and clinical reports. Biointerface Res. Appl. Chem. 13(2), 1 - 27. https://doi.org/10.33263/BRIAC132.149

Chatree, S., Sitticharoon, C., Maikaew, P., Pongwattanapakin, K., Keadkraichaiwat, I., Churintaraphan, M., Sripong, C., Sririwichitchai, R., & Tapechum, S. (2021). Epigallocatechin gallate decreases plasma triglyceride, blood pressure, and serum kisspeptin in obese human subjects. Experimental biology and medicine (Maywood, N.J.), 246(2), 163–176. https://doi.org/10.1177/1535370220962708

Chen, I. J., Liu, C. Y., Chiu, J. P., & Hsu, C. H. (2016). Therapeutic effect of high-dose green tea extract on weight reduction: A randomized, double-blind, placebo-controlled clinical trial. Clinical nutrition (Edinburgh, Scotland), 35(3), 592–599. https://doi.org/10.1016/j.clnu.2015.05.003

Choi, C., Song, H. D., Son, Y., Cho, Y. K., Ahn, S. Y., Jung, Y. S., Yoon, Y. C., Kwon, S. W., & Lee, Y. H. (2020). Epigallocatechin-3-Gallate Reduces Visceral Adiposity Partly through the Regulation of Beclin1-Dependent Autophagy in White Adipose Tissues. Nutrients, 12(10), 3072. https://doi.org/10.3390/nu12103072

Chusyd, D. E., Wang, D., Huffman, D. M., & Nagy, T. R. (2016). Relationships between Rodent White Adipose Fat Pads and Human White Adipose Fat Depots. Frontiers in nutrition, 3, 10. https://doi.org/10.3389/fnut.2016.00010

Cohn, J. S., Kamili, A., Wat, E., Chung, R. W., & Tandy, S. (2010). Reduction in intestinal cholesterol absorption by various food components: mechanisms and implications. Atherosclerosis. Supplements, 11(1), 45–48. https://doi.org/10.1016/j.atherosclerosissup.2010.04.004

Elffers, T. W., de Mutsert, R., Lamb, H. J., de Roos, A., Willems van Dijk, K., Rosendaal, F. R., Jukema, J. W., & Trompet, S. (2017). Body fat distribution, in particular visceral fat, is associated with cardiometabolic risk factors in obese women. PloS one, 12(9), e0185403. https://doi.org/10.1371/journal.pone.0185403

Jubaidi, F. F., Mathialagan, R. D., Noor, M. M., Taib, I.S. and Budin, S. B. (2019). Monosodium glutamate daily oral supplementation: study of its effects on male reproductive system on rat model. Journal of System Biology in Reproductive Medicine. 65(3), 194-204. https://doi.org/10.1080/19396368.2019.1573274

Kayode, O. T., Bello, J. A., Oguntola, J. A., Kayode, A. A. A., & Olukoya, D. K. (2023). The interplay between monosodium glutamate (MSG) consumption and metabolic disorders. Heliyon, 9(9), e19675. https://doi.org/10.1016/j.heliyon.2023.e19675

Khutami, C., Sumiwi, S. A., Khairul Ikram, N. K., & Muchtaridi, M. (2022). The Effects of Antioxidants from Natural Products on Obesity, Dyslipidemia, Diabetes and Their Molecular Signaling Mechanism. International journal of molecular sciences, 23(4), 2056. https://doi.org/10.3390/ijms23042056

Kim, H. S., Quon, M. J., & Kim, J. A. (2014). New insights into the mechanisms of polyphenols beyond antioxidant properties, lessons from the green tea polyphenol, epigallocatechin 3-gallate. Redox biology, 2, 187–195. https://doi.org/10.1016/j.redox.2013.12.022

Kurogi, M., Kawai, Y., Nagatomo, K., Tateyama, M., Kubo, Y., & Saitoh, O. (2015). Auto-oxidation products of epigallocatechin gallate activate TRPA1 and TRPV1 in sensory neurons. Chemical senses, 40(1), 27–46. https://doi.org/10.1093/chemse/bju057

Kurtanty, D., Faqih, D. M., & Upa, N. P. (2019). Review Monosodium Glutamat How to Understand it Properly. Journal of Chemical Information and Modeling. 53(9), 7-15. https://doi.org/10.1017/CBO9781107415324.004

Li, F., Gao, C., Yan, P., Zhang, M., Wang, Y., Hu, Y., Wu, X., Wang, X., & Sheng, J. (2018). EGCG Reduces Obesity and White Adipose Tissue Gain Partly Through AMPK Activation in Mice. Frontiers in pharmacology, 9, 1366. https://doi.org/10.3389/fphar.2018.01366

Li, W., Zhu, C., Liu, T., Zhang, W., Liu, X., Li, P., & Zhu, T. (2020). Epigallocatechin-3-gallate ameliorates glucolipid metabolism and oxidative stress in type 2 diabetic rats. Diabetes & vascular disease research, 17(6), 1479164120966998. https://doi.org/10.1177/1479164120966998

Luo, S., Gill, H., Dias, D. A., Li, M., Hung, A., Nguyen, L. T., & Lenon, G. B. (2019). The inhibitory effects of an eight-herb formula (RCM-107) on pancreatic lipase: enzymatic, HPTLC profiling and in silico approaches. Heliyon, 5(9), e02453. https://doi.org/10.1016/j.heliyon.2019.e02453

Macêdo, A.P.A., Gonçalves, M.d.S., Barreto-Medeiros, J.M., da Silva Neto, O.C., David, J.M., Villarreal, C.F., Macambira, S.G., Pereira Soares, M.B., Couto, R.D. (2023). Green Tea Induces the Browning of Adipose Tissue—Systematic Review. Obesities, 3, 193-206. https://doi.org/10.3390/obesities3030016

Mawarti, H., Ratnawati, R. dan Lyrawati, D. (2012). Epigallocatechin Gallate Menghambat Resistensi Insulin pada Tikus dengan Diet Tinggi Lemak. Jurnal Kedokteran Brawijaya, 27(1), 43-50. https://doi.org/10.21776/ub.jkb.2012.027.01.8

Miranda, R. A., Agostinho, A. R., Trevenzoli, I. H., Barella, L. F., Franco, C. C., Trombini, A. B., Malta, A., Gravena, C., Torrezan, R., Mathias, P. C. F. and de Oliveira, J. C. (2014). Insulin oversecretion in MSG-obese rats is related to alterations in cholinergic muscarinic receptor subtypes in pancreatic islets. Cell Physiol Biochem, 33(4), 1075 - 1086. https://doi.org/10.1159/000358677

Nauli, A. M., & Matin, S. (2019). Why Do Men Accumulate Abdominal Visceral Fat?. Frontiers in physiology, 10, 1486. https://doi.org/10.3389/fphys.2019.01486

Niaz, K., Zaplatic, E., & Spoor, J. (2018). Extensive use of monosodium glutamate: A threat to public health?. EXCLI journal, 17, 273–278. https://doi.org/10.17179/excli2018-1092

Ohishi, T., Fukutomi, R., Shoji, Y., Goto, S., & Isemura, M. (2021). The Beneficial Effects of Principal Polyphenols from Green Tea, Coffee, Wine, and Curry on Obesity. Molecules (Basel, Switzerland), 26(2), 453. https://doi.org/10.3390/molecules26020453

Panuganti, K. K., Nguyen, M., & Kshirsagar, R. K. (2023). Obesity. In StatPearls. StatPearls Publishing. https://pubmed.ncbi.nlm.nih.gov/29083734/

Rene, J. H. B., Ayman, M. M., Mina, K. and Norma, E. L. D. G. (2019). Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Journal of Biomedicine and Pharmacotherapy, 111, 503 - 516. https://doi.org/10.1016/j.biopha.2018.12.108

Rudyk, M., Hurmach, Y., Serhiichuk, T., Akulenko, I., Skivka, L., Berehova, T., & Ostapchenko, L. (2023). Multi-probiotic consumption sex-dependently interferes with MSG-induced obesity and concomitant phagocyte pro-inflammatory polarization in rats: Food for thought about personalized nutrition. Heliyon, 9(2), e13381. https://doi.org/10.1016/j.heliyon.2023.e13381

Saito, M., Matsushita, M., Yoneshiro, T., & Okamatsu-Ogura, Y. (2020). Brown Adipose Tissue, Diet-Induced Thermogenesis, and Thermogenic Food Ingredients: From Mice to Men. Frontiers in endocrinology, 11, 222. https://doi.org/10.3389/fendo.2020.00222

Santana, A., Santamarina, A., Souza, G., Mennitti, L., Okuda, M., Venancio, D., Seelander, M., do Nascimento, C. O., Ribeiro, E., Lira, F. and Oyama, L. (2015). Decaffeinated green tea extract rich in epigallocatechin 3-gallate improves insulin resistance and metabolic profiles in normolipidic diet-but not high-fat diet-fed mice. The Journal of Nutritional Biochemistry, 9(26), 893 - 902. https://doi.org/10.1016/j.jnutbio.2015.03.001

Tang, G., Xu, Y., Zhang, C., Wang, N., Li, H., & Feng, Y. (2021). Green Tea and Epigallocatechin Gallate (EGCG) for the Management of Nonalcoholic Fatty Liver Diseases (NAFLD): Insights into the Role of Oxidative Stress and Antioxidant Mechanism. Antioxidants (Basel, Switzerland), 10(7), 1076. https://doi.org/10.3390/antiox10071076

Tsuneyama, K., Nishida, T., Baba, H., Taira, S., Fujimoto, M., Nomoto, K. and Imura, J. (2014). Neonatal monosodium glutamate treatment causes obesity, diabetes and macrovesicular steatohepatitis with liver nodules in DIAR mice. J. Gastroenterol Hepatol, 1736 - 1743. https://doi.org/10.1111/jgh.12610

Wang, Y., Xia, H., Yu, J., Sui, J., Pan, D., Wang, S., Liao, W., Yang, L., & Sun, G. (2023). Effects of green tea catechin on the blood pressure and lipids in overweight and obese population-a meta-analysis. Heliyon, 9(11), e21228. https://doi.org/10.1016/j.heliyon.2023.e21228

Xu, H., Zhong, X., Wang, T., Wu, S., Guan, H., & Wang, D. (2023). (-)-Epigallocatechin-3-Gallate Reduces Perfluorodecanoic Acid-Exacerbated Adiposity and Hepatic Lipid Accumulation in High-Fat Diet-Fed Male C57BL/6J Mice. Molecules (Basel, Switzerland), 28(23), 7832. https://doi.org/10.3390/molecules28237832

Yang, C. S., Zhang, J., Zhang, L., Huang, J., & Wang, Y. (2016). Mechanisms of body weight reduction and metabolic syndrome alleviation by tea. Molecular nutrition & food research, 60(1), 160–174. https://doi.org/10.1002/mnfr.201500428

Yoshitomi, R., Yamamoto, M., Kumazoe, M., Fujimura, Y., Yonekura, M., Shimamoto, Y., Nakasone, A., Kondo, S., Hattori, H., Haseda, A., Nishihira, J. and Tachibana, H. (2021). The Combined Effect of Green Tea and α-Glucosyl Hesperidin in Preventing Obesity: A Randomized Placebo-Controlled Clinical Trial. Journal of Scientific Reports. 11(1): 1 – 8. https://doi.org/10.1038/s41598-021-98612-6

Zou, Y., Sheng, G., Yu, M., & Xie, G. (2020). The association between triglycerides and ectopic fat obesity: An inverted U-shaped curve. PloS one, 15(11), e0243068. https://doi.org/10.1371/journal.pone.0243068

Publicado

2024-11-21

Como Citar

Firdaus, Q. A. G., Suprihati, E., Mustofa, I., Susilowati, S., Damayanti3, R., Maslachah4, L., … Akintunde6, A. O. (2024). The The effect of epigallocatechin 3-gallate on body weight and abdominal fat of white rats (Rattus norvegicus) exposed to monosodium glutamate. Archives of Veterinary Science, 29(4). https://doi.org/10.5380/avs.v29i4.95789