Open Journal Systems

The use of body growth and kinship data from 16 generations for predicting Thoroughbred performance

Julia Dall'Anese, Joaquim Dias Antunes da Silva Junior, Carolina Lorena Hohl Abrahão, Luciana Laitano Dias de Castro, Yara de Oliveira Brandão, Úrsula Yaeko Yoshitani, Vanessa Knopp, Marcelo Beltrão Molento

Abstract


Thoroughbred horses have been intensely raised for their athletic potential that is correlated with morphological parameters (i.e., body weight - BW, and withers height - WH). Optimum and consistent body development is aimed, but excessive growth rates may lead to the development of orthopedic diseases. This study aimed to generate growth rate curves and prediction models of Thoroughbred horses by analyzing BW and WH data collected monthly over 16 years of 378 animals (23.6 animals/year). The animals were checked from birth to 18 months (160 colts and 181 fillies) on a farm in the south of Brazil. A prediction performance ARIMA model was developed based on the BW and WH of the foals using a maximum and minimum range of 7320 observations. BW and WH were 54,1 kg and 102,5 cm at birth and 397,8 kg and 150,6 cm at 18 months of age, respectively. No differences were found between sex at any age. Moreover, we have established a nonlinear function for the growth curve and on average, foals were expected to get 7.4 times heavier and 1.5 times taller when animals were fully grown. Males showed greater BW uniformity than females, as females had a lower minimum BW than males. Significant statistical differences (P < 0,05%) were reported for BW and WH of foals between pairs of sires highlighting the kinship (paternal) effect on the animals’ development. Seventy-two pairs of stallions showed statistical relevance for BW and 91 for WH. The ARIMA model produced a linear trend of BW and WH for the forecasted years. In conclusion, we recommend that careful sire selection and adequate health (i.e., parasite control, vaccination), and nutrition strategies must be adopted to achieve superior body growth as estimated by the predicting model (positive scenario). The present protocol shall be used in studs worldwide to monitor horse development. The spreadsheet is available on request to the corresponding authors.


Keywords


foal; growth curve; horse; paternal effect; performance

Full Text:

PDF

References


_________. KER Gro-Trac Equine Growth Monitoring. . Kentucky: Kentucky Equine Research. Disponível em: .

_________.ABCPCC. Associação Brasileira de Criadores e Proprietários de Cavalos de Corrida (StudBook, Estatísticas Nacionais). Disponível em: . Acesso em: 20/1/2023.

BARNEVELD, A.; VAN WEEREN, P. R. Conclusions regarding the influence of exercise on the development of the equine musculoskeletal system with special reference to osteochondrosis. Equine veterinary journal. Supplement, , n. 31, p. 112–119, 1999.

BELLAW, J. L.; PAGAN, J.; CADELL, S.; et al. Objective evaluation of two deworming regimens in young Thoroughbreds using parasitological and performance parameters. Veterinary Parasitology, v. 221, p. 69–75, 2016. Elsevier B.V. Disponível em: .

BELTRÁN, J. J.; BUTTS, W. T.; OLSON, T. A.; KOGER, M. Growth patterns of two lines of Angus cattle selected using predicted growth parameters. Journal of animal science, v. 70, n. 3, p. 734–741, 1992.

BROWN-DOUGLAS, C. G.; PAGAN, JOE D. Body Weight, Wither Height and Growth Rates in Thoroughbreds Raised in America, England, Australia, New Zealand and India. In: J D Pagan (Org.); Advances in Equine Nutrition IV. 4o ed, v. IV, p.213–220, 2009. Nottingham: Nottingham University Press.

BROWN-DOUGLAS, C. G.; PAGAN, JOE D.; STROMBERG, A. J. Thoroughbred growth and future racing performance. In: J. D. Pagan (Org.); Advances in Equine Nutrition IV. 1o ed, p.231–245, 2009. Nottingham: Nottingham University Press.

BROWN-DOUGLAS, C. G.; PARKINSON, T. J.; FIRTH, E. C.; FENNESSY, P. F. Bodyweights and growth rates of spring- and autumn-born thoroughbred horses raised on pasture. New Zealand Veterinary Journal, v. 53, n. 5, p. 326–331, 2005.

CANEVER, R. J.; BRAGA, P. R. C.; BOECKH, A.; et al. Lack of Cyathostomin sp. reduction after anthelmintic treatment in horses in Brazil. Veterinary Parasitology, v. 194, n. 1, p. 35–39, 2013. Elsevier B.V. Disponível em: .

CHRISTIE, J. L.; HEWSON, C. J.; RILEY, C. B.; et al. Management factors affecting stereotypes and body condition score in nonracing horses in Prince Edward Island. Canadian Veterinary Journal, v. 47, n. 2, p. 136–143, 2006.

COLPITTS, J.; MCLOUGHLIN, P. D.; POISSANT, J. Runs of homozygosity in Sable Island feral horses reveal the genomic consequences of inbreeding and divergence from domestic breeds. BMC Genomics, v. 23, n. 1, p. 1–17, 2022. BioMed Central. Disponível em: .

CUNNINGHAM, K.; FOWLER, S. H. A study of growth and development in the quarter horse. LSA Agricultural Experiment Station Reports, v. 546, 1961. Disponível em: .

DIAS DE CASTRO, L. L.; ABRAHÃO, C. A. H.; ANTUNES, J.; PRITSCH, I.; MOLENTO, M. B. Body Development from Birth to 18 Months of Age of Thoroughbred Foals in Brazil. International Journal of Plant, Animal and Environmental Sciences, v. 11, n. 03, p. 352–362, 2021.

DINI, P.; KALBFLEISCH, T.; URIBE-SALAZAR, J. M.; et al. Parental bias in expression and interaction of genes in the equine placenta. Proceedings of the National Academy of Sciences of the United States of America, v. 118, n. 16, 2021.

ELLIOTT, C.; MORTON, J.; CHOPIN, J. Factors affecting foal birth weight in Thoroughbred horses. Theriogenology, v. 71, n. 4, p. 683–689, 2009.

FARIA, R.; SILVA, M. DE A. E; BUENO, R. S.; et al. Avaliação genética e fenotípica de características de conformação em potros de três raças equinas.pdf. Revista Ceres, v. 51, n. 295, p. 333–344, 2004.

FITZHUGH JR., H. A. Analysis of growth curves and strategies for altering their shape. Journal of Animal Science, v. 42, n. 4, p. 1036–1051, 1976.

FRADINHO, M. J.; BESSA, R. J. B.; FERREIRA-DIAS, G.; CALDEIRA, R. M. Growth and development of the Lusitano horse managed on grazing systems. Livestock Science, v. 186, p. 22–28, 2016. Elsevier. Disponível em: .

GARCIA, F. P. S.; ALFAYA, H.; LINS, L. A.; VELHO, J. R.; NOGUEIRA, C. E. W. Influence of the maternal age and number of labors in the performance of Thoroughbred horses raised in Bagé , southern Brazil. Revista Por, v. 110, n. 577–580, p. 39–42, 2011.

GIANOLA, D.; WEIGEL, K. A.; KRÄMER, N.; STELLA, A.; SCHÖN, C. C. Enhancing genome-enabled prediction by bagging genomic BLUP. PLoS ONE, v. 9, n. 4, 2014.

HILL, E. W.; STOFFEL, M. A.; MCGIVNEY, B. A.; MACHUGH, D. E.; PEMBERTON, J. M. Inbreeding depression and the probability of racing in the Thoroughbred horse. Proceedings of the Royal Society B: Biological Sciences, v. 289, n. 1977, p. 1–7, 2022.

HINTZ, R. L.; HINTZ, H. F.; VAN VLECK, L. D. Estimation of heritabilities for weight, height and front cannon bone circumference of Thoroughbreds. Journal of Animal Science, v. 47, n. 6, p. 1243–1245, 1978.

HUNTINGTON, P. J.; BROWN-DOUGLAS, C. G.; PAGAN, J. D. Growth and development of Thoroughbred horses. Animal Production Science, v. 60, n. 18, p. 2093–2102, 2020.

JELAN, Z. A.; JEFFCOTT, L. B.; LUNDEHEIM, N.; OSBORNE, M. Growth rates in thoroughbred foals. Pferdeheilkunde, v. 12, n. 3, p. 291–295, 1996.

KAVAZIS, A. N.; OTT, E. A. Growth rates in Thoroughbred horses raised in Florida. Journal of Equine Veterinary Science, v. 23, n. 8, p. 353–357, 2003.

KLEWITZ, J.; STRUEBING, C.; ROHN, K.; et al. Effects of age, parity, and pregnancy abnormalities on foal birth weight and uterine blood flow in the mare. Theriogenology, v. 83, n. 4, p. 721–729, 2015. Elsevier Inc. Disponível em: .

KOCHER, A.; STANIAR, W. B. The pattern of Thoroughbred growth is affected by a foal’s birthdate. Livestock Science, v. 154, n. 1–3, p. 204–214, 2013. Elsevier. Disponível em: .

KUHI, H. D.; HOSSEIN-ZADEH, N. G.; FRANCE, J.; LÓPEZ, S. In the description of equine somatic growth using nonlinear functions. Journal of Equine Veterinary Science, v. 111, p. 103893, 2022. Elsevier Inc. Disponível em: .

LEACH, D.; CYMBALUK, N. F. Relationships between stride length, stride frequency, velocity, and morphometrics of foals. American journal of veterinary research, v. 47, n. 9, p. 2090–2097, 1986. Disponível em: .

MANSO FILHO, H. C.; HUNKA, M. M.; WANDERLEY, E. K.; et al. Pattern of Development in Foals from Four Different Breeds between Birth and Weaning. Open Journal of Veterinary Medicine, v. 04, n. 05, p. 72–77, 2014.

MATTHEE, S.; KRECEK, R. C.; MILNE, S. A.; BOSHOFF, M.; GUTHRIE, A. J. Impact of management interventions on helminth levels, and body and blood measurements in working donkeys in South Africa. Veterinary Parasitology, v. 107, n. 1–2, p. 103–113, 2002.

MCGIVNEY, B. A.; HAN, H.; CORDUFF, L. R.; et al. Genomic inbreeding trends, influential sire lines and selection in the global Thoroughbred horse population. Scientific Reports, v. 10, n. 1, p. 1–12, 2020.

MOLENTO, M. B. Resistência parasitária em helmintos de equídeos e propostas de manejo. Ciência Rural, v. 35, n. 6, p. 1469–1477, 2005. Disponível em: .

MOLENTO, M. B.; VILELA, V. L. R. Health evaluation of donkeys: Parasite control methods and a model for challenge infections. Brazilian Journal of Veterinary Research and Animal Science, v. 58, n. Special Issue, 2021.

MOREL, P. C. H.; BOKOR, Á.; ROGERS, C. W.; FIRTH, E. C. Growth curves from birth to weaning for thoroughbred foals raised on pasture. New Zealand Veterinary Journal, v. 55, n. 6, p. 319–325, 2007.

ONODA, T.; YAMAMOTO, R.; SAWAMURA, K.; et al. Empirical growth curve estimation considering multiple seasonal compensatory growths of body weights in Japanese Thoroughbred colts and fillies. Journal of Animal Science, v. 91, n. 12, p. 5599–5604, 2013.

PAGAN, J. D. Managing growth for different commercial end points. In: J. D. Pagan (Org.); Advances in Equine Nutrition III. 1o ed, p.319–326, 2005. Nottingham: Nottingham University Press.

PAGAN, J. D.; BROWN-DOUGLAS, C. G.; CADDEL, S. Body weight and condition of Kentucky Thoroughbred mares and their foals as influenced by month of foaling, season and gender. In: J. D. Pagan (Org.); Advances in Equine Nutrition IV2. 1o ed, p.137–145, 2009. Nottingham: Nottingham University Press.

PAGAN, J. D.; JACKSON, S. G. The incidence of developmental orthopedic disease on a Kentucky thoroughbred farm. Pferdeheilkunde, v. 12, n. 3, p. 351–354, 1996.

PAGAN, J. D.; JACKSON, S. G.; CADDEL, S. A summary of growth rates of Thoroughbreds in Kentucky. Pferdeheilkunde, v. 12, n. 3, p. 285–289, 1996.

REINEMEYER, C. R.; FARLEY, A.; CLYMER, B. Comparisons of cyathostome control and selection for benzimidazole resistance using larvicidal regimens of moxidectin gel or fenbendazole paste. International Journal of Applied Research in Veterinary Medicine, v. 1, n. 1, p. 66–72, 2003. Disponível em: .

SAASTAMOINEN, M. Heritabilities for Body Size and Growth Rate and Phenotypic Correlations Among Measurements in Young Horses. Acta Agriculturae Scandinavica, v. 40, n. 4, p. 377–386, 1990.

SAVAGE, C. J.; MCCARTHY, R. N.; JEFFCOTT, L. B. Effects of dietary energy and protein on induction of dyschondroplasia in foals. Equine Veterinary Journal, v. 25, n. 16 S, p. 74–79, 1993.

SCHRODERUS, E.; OJALA, M. Estimates of genetic parameters for conformation measures and scores in Finnhorse and Standardbred foals. Journal of Animal Breeding and Genetics, v. 127, n. 5, p. 395–403, 2010.

SCHRURS, C.; BLOTT, S.; DUBOIS, G.; VAN ERCK-WESTERGREN, E.; GARDNER, D. S. Locomotory Profiles in Thoroughbreds: Peak Stride Length and Frequency in Training and Association with Race Outcomes. Animals, v. 12, n. 23, 2022.

SILVA, R. H. P.; REZENDE, A. S. C.; SALIBA, E. DE O. S.; et al. The effect of deworming on apparent digestion, body weight, and condition in heavily parasitized mares. Journal of Equine Veterinary Science, v. 36, p. 83–89, 2016. Elsevier Ltd. Disponível em: .

SMITH, A. M.; STANIAR, W. B.; SPLAN, R. K. Associations between yearling body measurements and career racing performance in Thoroughbred racehorses. Journal of Equine Veterinary Science, v. 26, n. 5, p. 212–214, 2006.

STANIAR, W. B.; KRONFELD, D. S.; TREIBER, K. H.; SPLAN, R. K.; HARRIS, P. A. Growth rate consists of baseline and systematic deviation components in Thoroughbreds. Journal of Animal Science, v. 82, n. 4, p. 1007–1015, 2004.

TEIXEIRA, G. L.; FERNANDES, T. J.; MUNIZ, J. A.; et al. Growth curves of campolina horses using nonlinear models. Livestock Science, v. 251, n. September 2020, 2021. Elsevier B.V.

WOLF, J. B.; HAGER, R. A maternal-offspring coadaptation theory for the evolution of genomic imprinting. PLoS Biology, v. 4, n. 12, p. 2238–2243, 2006.




DOI: http://dx.doi.org/10.5380/avs.v1i1.89547