GEOBIA, TREE DECISION AND HIERARCHICAL CLASSIFICATION FOR MAPPING GULLY EROSION

Autores

  • Andrea Tedesco Universidade Estadual de Ponta Grossa - UEPG
  • Alzir Felippe Buffara Antunes Universidade Federal do Paraná - UFPR

DOI:

https://doi.org/10.5380/raega.v48i0.74842

Palavras-chave:

ALS Data, High Resolution Imagery, Multirresolution Segmentation

Resumo

The gullies provoke environmental, social and financial damages. The application of corrective and preventive measures needs gullies mapping and monitoring. In this scope, this study proposes a methodology for gullies delimitation using object-oriented image analysis. For such, there were used high spatial resolution imagery and ALS data applied for two study areas, one in Uberlandia-Minas Gerais (Brazil) and another one in Queensland (Australia). The objects were generated by multiresolution segmentation. The most important attributes on the delimitation of the gullies were selected using decision tree induction algorithms, being them: spectral, altimetric and texture. Classifications by decision trees and hierarchical were carried out. The use of decision tree allowed the selection of attributes and the establishment of preliminary decision rules. However, since this procedure did not use fuzzy logic, mixtures between classes could not be evidenced in the rule base. Moreover, the classification was performed by a factor of scale only, which did not allow the identification of all the constituent features of the gully. In hierarchical classification, the procedure is performed on different scales, allowing the use of fuzzy logic to describe different degrees of membership in each class, which makes it a very attractive method for cases such as this study, where there is mixing of classes. The classification obtained with hierarchical classification it was more reliable with the field truth, by allowing the use of different scales, uncertainty insert and integration of knowledge, compared to the automatic classification by decision tree.

Biografia do Autor

Andrea Tedesco, Universidade Estadual de Ponta Grossa - UEPG

Departamento de Geociências

Áreas: Levantamentos Topográficos; Cartografia e Cartografia Temática;Sensoriamento Remoto.

Alzir Felippe Buffara Antunes, Universidade Federal do Paraná - UFPR

Departamento de Geomática 

Áreas: Sensoriamento Remoto; Cadastro Técnico Multifinalitário.

Referências

- ALKHASAWNEH, M.; NGAH, U. K.; TAY, L. T.; ISA, N. A. M.; AL-BATAH, M. S. Modeling and Testing Landslide Hazard Using Decision Tree. Journal of Applied Mathematics, p. 1-9, 2014.

- ARABAMERI, A.; REZAEI, K., POURGHASEMI, H. R.; LEE, S.; YAMANI, M. GIS-based gully erosion susceptibility mapping: a Comparison among three data-driven models and AHP knowledge-based technique. Environmental Earth Sciences, volume 77, 2018.

- BAATZ, M.; SCHÄPE, A. Object-Oriented and Multi-Scale Image Analysis in Semantic Networks. 2nd International Symposium: Operationalization of Remote Sensing, ITC Netherlands, 1999.

- BREIMAN, L.; FRIEDMAN, J. H.; OLSEN, R. A.; STONE, C. J. Classification and Regression Trees. Belmont, CA: Wadsworth, 1984.

- BUI, D. T.; SHIRZADI, A.; SHAHABI, H.; CHAPI, K.; OMIDAVR, E.; PHAM, B. T.; ASL, D. T.; KHALEDIAN, H.; PRADHAN, B.; PANAHI, M.; AHMAD, B. B.; RAHMANI, H.; GRÓF, G.; LEE, S. A Novel Ensemble Artificial Intelligence Approach for Gully Erosion Mapping in a Semi-Arid Watershed (Iran). Sensors (Basel), v.19; 2019.

- EUSTACE, A.; PRINGLE, M.; WITTE, C. Give me the dirt: Detection of Gully Extent and Volume Using High-Resolution LIDAR. Innovations in Remote Sensing and Photogrammetry: Lecture Notes in Geoinformation and Cartography. Berlin: Springer publisher, pp. 255-269, 2009.

- HARALICK, R. M.; SHANMUGAM, K.; DINSTEIN, I. Textural Features for Image Classification. IEEE Transactions on systems, man, and cybernetics, v. SMC-3, nº. 6, p. 610-621, 1973.

- HESSEL, R.; VAN ASCH, T. Modelling gully erosion for a small catchment on the Chinese Loess Plateau. Catena, 54, pp. 131-146, 2003.

- JAMES, L. A.; WATSON, D. G.; HANSE, W. F. Using LiDAR data to map gullies and headwater streams under forest canopy: South Carolina, USA. Catena, 71, pp. 132-144, 2007.

- JOHANSEN, K.; TAIHEI, S.; TINDALL, D.; PHINN, S. Object-based Monitoring of Gully Extent and Volume in North Australia using LiDAR Data. Proceedings of the 4th GEOBIA, Rio de Janeiro, pp. 168-173, 2012.

- KING, C.; BAGHDADI, N.; LECOMTE, V.; CERDAN, O. The application of remote-sensing data to monitoring and modelling of soil erosion. Catena, 62, pp. 79-93, 2005.

- MARTÍNEZ-CASANOVAS, J. A.; RAMOS, M. C.; POESEN, J. Assessment of sidewall erosion in large gullies using multi-temporal DEMs and logistic regression analysis. Geomorphology, 58, pp. 305-321, 2004.

- MARZOLFF, I.; POESEN, J. The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system. Geomorphology, volume 111, pp. 48-60, 2009.

- MORGAN, R. P. C. Soil Erosion and Conservation. Oxford: Blackwell Publishing, 2005.

- PERROY, R. L.; BOOKHAGEN, B.; ASNER, G. P.; CHADWICK, O. A. Comparison of gully erosion estimates using airborne and ground-based LiDAR on Santa Cruz Island, California. Geomorphology, 118, pp. 288-300, 2010.

- REAL, L. S. C.; CRESTANA, S.; FERREIRA, R. R. M.; RODRIGUES, V. G. S. Evaluation of gully development over several years using GIS and fractal analysis: a case study of the Palmital watershed, Minas Gerais (Brazil). Environmental Monitoring and Assessment, volume 192, Article number: 434, 2020.

- SHRUTHI, R. B. V.; KERLE, N.; JETTEN, V. Object based gully feature extraction using high spatial resolution imagery. Geomorphology, 134, pp. 260-268, 2011.

- SHRUTHI, R. B. V.; KERLE, N.; JETTEN, V. ABDELLAH, L.; MACHMACH, I. Quantifying temporal changes in gully erosion areas with object oriented analysis. Catena, v. 128, p. 262-277, 2015.

- TSO, B.; MATHER, P. M. Classification methods for remotely sensed data. Florida – USA: CRC Press, 2009.

- VRIELING, A.; RODRIGUES, S. C.; STERK, G. Evaluating erosion from space: a case study near Uberlândia. Revista Sociedade & Natureza, p. 683-696, 2005.

- ZABIHI, M.; MOTEVALLI, ALIREZA; DARVISHAN, A. K.; POURGHASEMI, H. R.; ZAKERI, M. A.; SADIGHI, F. Spatial modelling of gully erosion in Mazandaran Province, northern Iran. Catena, 161, p.1-13, 2018.

- ZADEH, L. A. Fuzzy Sets. Information and Control, v. 8, p.338-353, 1965.

- ZADEH, L. A. Is there a need for fuzzy logic? Information Sciences, v. 178, p. 2751–2779, 2008.

- WANG, T.; HE, F.; ZHANG, A.; GU, L.; WEN, Y.; JIANG, W.; SHAO, H. Quantitative Study of Gully Erosion Based on Object-Oriented Analysis Techniques: A Case Study in Beiyanzikou Catchment of Qixia, Shandong, China. The Scientific World Journal, pp. 1-11, 2014.

- WANG, R.; ZHANG, S.; PU L.; YANG, J.; YANG, C.; CHEN, J.; GUAN, C.; WANG, Q.; CHEN, D.; FU, B.; SANG, X. Gully Erosion Mapping and Monitoring at Multiple Scales Based on Multi-Source Remote Sensing Data of the Sancha River Catchment, Northeast China. ISPRS - International Journal of Geoinformation, 5, 200-217, 2016.

Publicado

2020-12-26

Como Citar

Tedesco, A., & Antunes, A. F. B. (2020). GEOBIA, TREE DECISION AND HIERARCHICAL CLASSIFICATION FOR MAPPING GULLY EROSION. RAEGA - O Espaço Geográfico Em Análise, 48, 187–215. https://doi.org/10.5380/raega.v48i0.74842

Edição

Seção

Artigos