Use of external solar spectra to multispectral sensor systems as an alternative for radiometric correction and calibration of ToA reflectance
DOI:
https://doi.org/10.5380/raega.v62i1.98554Resumo
Most Earth observation satellite missions do not have instruments to measure solar irradiance in orbit. Consequently, the temporal variability of the recorded reflectance is based only on the radiance measured by the sensor, since the incident solar irradiance is considered constant. This approach neglects non-seasonal variability associated with solar activity and can compromise the accuracy of reflectance values. The aim of this study was to investigate if solar spectra obtained daily by instruments external to multispectral sensor systems can contribute to increasing the accuracy of top-of-atmosphere (ToA) reflectance data. Solar spectra from the Spectral Irradiance Monitor (SIM/SORCE) instrument and ToA reflectance data from the Enhanced Thematic Mapper Plus (ETM+/Landsat-7) sensor were used. ToA reflectance data from the Radiometric Calibration Network portal was used as a reference for the accuracy analysis. The results indicate that the use of SIM/SORCE solar spectra in the radiometric correction of ETM+/Landsat-7 ToA reflectance can help increase the accuracy rates of ToA reflectance in the green (> 1%), red (> 0.1%), NIR (> 0.1%), SWIR-1 (> 3%) and SWIR-2 (> 2%) spectral bands. In addition, contributions to temporal stability were found in the blue, green, NIR and SWIR-1 bands (< 0.2%). We conclude that the use of external daily solar spectra can contribute to improving the accuracy and temporal stability of ToA reflectance values obtained by multispectral sensor systems whose pre-processing is based on radiance values.
Referências
BOUVET, M. Radiometric comparison of multispectral imagers over a pseudo-invariant calibration site using a reference radiometric model. Remote Sensing of Environment, v. 140, p. 141–154, 2014. http://dx.doi.org/10.1016/j.rse.2013.08.039.
HARDER, J.; LAWRENCE, G.; FONTENLA, J.; ROTTMAN, G.; WOODS, T. The Spectral Irradiance Monitor: Scientific Requirements, Instrument Design, and Operation Modes. Solar Physics, v. 230, p. 141–167, 2005. https://doi.org/10.1007/s11207-005-5007-5.
HELDER, D. L.; BASNET, B.; MORSTAD, D. L. Optimized identification of worldwide radiometric pseudo-invariant calibration sites. Canadian Journal of Remote Sensing, v. 36, n. 5, p. 527-539, 2010. https://doi.org/10.5589/m10-085.
LASP (Laboratory for Atmospheric and Space Physics). SORCE - Solar Radiation and Climate Experiment, 2022. https://lasp.colorado.edu/home/sorce/.
LI, F.; JUPP, D. L. B.; SAGAR, S.; SCHROEDER, T. The Impact of Choice of Solar Spectral Irradiance Model on Atmospheric Correction of Landsat 8 OLI Satellite Data. IEEE Transactions on Geoscience and Remote Sensing, p. 1–11, 2020. https://doi.org/10.1109/tgrs.2020.3011006.
MARKHAM, B.; BARKER, J. L.; BARSI, J. A.; KAITA, E.; THOME, K. J.; HELDER, D. L.; PALLUCONI, F. D.; SCHOTT J. R.; SCARAMUZZA, P. Landsat-7 ETM+ radiometric stability and absolute calibration. Proceedings of SPIE - The International Society for Optical Engineering, 2002. https://doi.org/10.1117/12.462998.
MARKHAM, B.; BARSI, J.; KVARAN, G.; ONG, L.; KAITA, E.; BIGGAR, S.; CZAPLA-MYERS, J.; MISHRA, N.; HELDER, D. Landsat-8 operational land imager radiometric calibration and stability. Remote Sensing, v. 6, n. 12, p. 12275–12308, 2014. https://doi.org/10.3390/rs61212275.
MÜLLER, J. G.; VIBRANS, A. C.; PINTO, C. T. Impact of Solar Activity on the Calculation of ToA Reflectance Values of Multispectral Images. IEEE Transactions on Geoscience and Remote Sensing, v. 62, p. 1-6, 2024. https://doi.org/10.1109/TGRS.2024.3364523.
MÜLLER, J. G.; VIBRANS, A. C. Variations in solar irradiance caused by solar cycle affect the temporal stability of ETM+ (LS7) ToA reflectance values at pseudo-invariant calibration sites (PICS). International Journal of Remote Sensing, v. 45, n. 16, p. 5530–5543. https://doi.org/10.1080/01431161.2024.2371085.
RadCalNet (Radiometric Calibration Network portal). RadCalNet Quick Start Guide. 2018. https://www.radcalnet.org.
USGS (United States Geological Survey). Landsat 7 (L7) Data Users Handbook. 2 ed. [S.l.]: [s.n.]. 2019a. https://www.usgs.gov/media/files/landsat-7-data-users-handbook.
USGS (United States Geological Survey). Landsat 8 (L8) Data Users Handbook. 5 ed. 2019b. https://www.usgs.gov/media/files/landsat-8-data-users-handbook.
THOME, K. J. Absolute Radiometric Calibration of Landsat 7 ETM Using the Reflectance-based Method. Remote Sensing of Environment, v. 78, p. 27-38, 2001. https://doi.org/10.1016/S0034-4257(01)00247-4.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Declaro que o ARTIGO submetido é INÉDITO, ORIGINAL e de MINHA RESPONSABILIDADE. Declaro que o artigo não foi submetido ou está em avaliação em outra revista/periódico.
Estou ciente dos itens presentes na LEI Nº 9.610/98 (DIREITOS AUTORAIS) e me responsabilizo por quaisquer problemas relacionados a PLÁGIO.
Estou ciente de que o artigo submetido poderá ser removido da Revista, caso se observe A QUALQUER TEMPO que ele se encontra publicado integralmente ou em parte em outro PERIÓDICO científico.
Declaro, COMO PRIMEIRO AUTOR, que os demais autores do trabalho estão cientes desta submissão e de que NÃO receberão qualquer tipo de remuneração pela divulgação do trabalho.
Como primeiro autor, autorizo, de antemão, a RA’E GA - O Espaço Geográfico em Análise(ISSN 2177-2738), a publicar o artigo, caso aceito.
