Spatiotemporal variability of reference evapotranspiration estimated using satellite images in the Tibagi River Basin, Paraná State, Brazil

Autores

DOI:

https://doi.org/10.5380/raega.v62i1.98349

Resumo

The reference evapotranspiration (ETo) is an essential tool in planning and management of water resources, but large-scale monitoring using traditional methods is impractical due to its cost and logistics. An alternative is to rely on remote data to model ETo. This study aimed to evaluate the spatial variability of daily ETo in the Tibagi River Basin (TRB), estimated with remote sensing data during years with ENSO events, and to estimate ETo between Landsat satellite images using a temporal interpolation algorithm. ETo was calculated using the Moretti-Jerszurki-Silva model (MJS; EToMJS(ψair;Ra)) and spatial data of temperature and relative humidity were estimated with a multiple linear regression model. Spatial variability was assessed using images that represented the seasons in 2013 (Normal), 2015 (El Niño), and 2011 (La Niña). The temporal variability of EToMJS(ψair;Ra) was tested with linear interpolation between Landsat 8 images in 2013, using the "r.series.interp" algorithm. The interpolated EToMJS(ψair;Ra)int was compared with EToPM calculated with the Penman-Monteith method using daily climatic data coming from local meterological stations. The spatialized ETo identified differences in the seasons under the analyzed climate scenarios, which was not possible with EToPM. The methodology for estimating spatialized EToMJS(ψair;Ra) over large areas showed acceptable accuracy, despite being laborious for extensive coverage. Temporal ETo showed satisfactory statistical accuracy (RMSE = 0,65 mm dia-1; r = 0,73; MAPE = 5,94%; NSE = -1,2; d = 0,04), although the limitations of the images and the linear interpolation algorithm limited the monitoring of daily EToPM variations.

Biografia do Autor

Jorge Luiz Moretti de Souza, UFPR

Resumo Biográfico: Graduação em Engenharia Agrícola, na Universidade Federal de Lavras (UFLA); Mestrado e Doutorado em Irrigação e Drenagem, na Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ) / Universidade de São Paulo (USP).

Áreas de atuação: Engenharia Agrícola; Engenharia de Água e Solo; Relação água-solo-planta-atmosfera

Denis Pinheiro da Silva, Universidade Federal do Paraná / Setor de Ciências Agrárias (SCA) / Departamento de Solos e Engenharia Agrícola (DSEA) / Programa de Pós-Graduação em Ciência do Solo

Resumo da biografia: Graduação em Agronomia, na Universidade Federal Rural da Amazônia (UFRA); Especialização em Georreferenciamento de Imóveis Rurais, no Instituto de Pósgraduação e Cursos (IPGC); Mestrado em Ciência do Solo, na Universidade Federal do Paraná (UFPR).

Áreas de atuação: Agronomia; Geotecnologias; Sensoriamento Remoto e Sistemas de Informação Geográfica

Daniela Jerszurki, NDrip Israel, Center Israel

Resumo da biografia: Graduação em Agronomia, na Universidade Federal do Paraná (UFPR); Mestrado e Doutorado em Ciência do Solo, na Universidade Federal do Paraná (UFPR); Pós-doutorado em Física do Solo, na Ben Gurion University of Negev, em Israel.

Áreas de atuação: Agronomia; Engenharia de Água e Solo; Relação Água-Solo-Planta-Atmosfera.

Referências

ALLEN, R. G.; TASUMI, M.; TREZZA, R. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration METRIC – Model. Journal of Irrigation and Drainage Engineering, Asce, v. 133, n. 4, p. 380-394, 2007.

ALLEN, R.; IRMAK, A.; TREZZA, R.; HENDRICKX, J. M. H.; BASTIAANSSEN, W.; KJAERSGAARD, J. Satellite-based ET estimation in agriculture using SEBAL and METRIC. Hydrological Processes, v. 25, n. 26, p. 4011-4027, 2011. Wiley. http://dx.doi.org/10.1002/hyp.8408.

ALVARES, C. A.; STAPE, J. L.; SENTELHAS, P.; GONÇALVES, J. L. M.; SPAROVEK, G. Köppen's climate classification map for Brazil. Meteorologische Zeitschrift, v. 22, n. 6, p. 711-728, 2013. Schweizerbart. http://dx.doi.org/10.1127/0941-2948/2013/0507.

AMANKULOVA, K.; FARMONOV, N.; AKRAMOVA, P.; TURSUNOV, I; MUCSI, L. Comparison of PlanetScope, Sentinel-2, and landsat 8 data in soybean yield estimation within-field variability with random forest regression. Heliyon, v. 9, e17432, 2023. https://doi.org/10.1016/j.heliyon.2023.e17432

ANA (Agência Nacional de Águas). Estimativas de evapotranspiração real por sensoriamento remoto no Brasil. 4. ed. Brasília: Ana, 2020. 23 p.

ASCE-EWRI (New York). American Society of Civil Engineers. The ASCE Standardized Reference Evapotranspiration Equation. New York: American Society of Civil Engineers, 2005. 70 p. Task Committee Report.

BECK, H. E.; McVICAR, T. R.; VERGOPOLAN, N.; BERG, A.; LUTSKO, N. J.; DUFOUR, A.; ZENG, Z.; JIANG, X.; VAN DIJK, A. I. J. M.; MIRALLES, D. G. High-resolution (1 km) Köppen-Geiger maps for 1901–2099 based on constrained CMIP6 projections. Scientific Data, v. 10, n. 724, 2023. https://doi.org/10.1038/s41597-023-02549-6

BOGGIONE, G. A.; FONSECA, L. M. G. Restoration of Landsat-7 Images. National Institute For Space Research, São José dos Campos, 2004. Disponível em: <http://mtc-m12.sid.inpe.br/rep/sid.inpe.br/jeferson/2004/01.13.13.12>.

CAMMALLERI, C.; ANDERSON, M. C.; GAO, F.; HAIN, C. R.; KUSTAS, W. P. A data fusion approach for mapping daily evapotranspiration at field scale. Water Resources Research, v. 49, n. 8, p. 4672-4686, 2013. American Geophysical Union (AGU). http://dx.doi.org/10.1002/wrcr.20349.

CAMMALLERI, C.; ANDERSON, M. C.; GAO, F.; HAIN, C. R.; KUSTAS, W. P. Mapping daily evapotranspiration at field scales over rainfed and irrigated agricultural areas using remote sensing data fusion. Agricultural and Forest Meteorology, v. 186, p. 1-11, 2014. Elsevier BV. http://dx.doi.org/10.1016/j.agrformet.2013.11.001.

CAVALCANTI, I. F. A.; CARRIL, A. F.; PENALBA, O. C.; GRIMM, A. M.; MENÉNDEZ, C. G.; SANCHEZ, E.; CHERCHI, A.; SÖRENSSON, A.; ROBLEDO, F.; RIVERA, J. Precipitation extremes over La Plata Basin – Review and new results from observations and climate simulations. Journal of Hydrology, v. 523, p. 211-230, 2015. Elsevier BV. http://dx.doi.org/10.1016/j.jhydrol.2015.01.028.

CHE, X.; FENG, M.; SEXTON, J. O.; CHANNAN, S.; YANG, Y.; SUN, Q. Assessment of MODIS BRDF/Albedo Model Parameters (MCD43A1 Collection 6) for Directional Reflectance Retrieval. Remote Sensing, v. 9, n. 1123, 2017. https://doi.org/10.3390/rs9111123

GAO, F.; ANDERSON, M.; ZHANG, X.; YANG, Z.; ALFIERI, J. G.; KUSTAS, W. P.; MUELLER, R.; JOHNSON, D. M.; PRUEGER, J. H. Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Remote Sensing of Environment, v. 188, p. 9–25, 2017. http://dx.doi.org/10.1016/j.rse.2016.11.004.

GAO, F.; MASEK, J.; SCHWALLER, M.; HALL, F. On the blending of the Landsat and MODIS surface reflectance: predicting daily landsat surface reflectance. Transactions on Geoscience and Remote Sensing, [S.L.], v. 44, n. 8, p. 2207-2218, 2006. Institute of Electrical and Electronics Engineers (IEEE). http://dx.doi.org/10.1109/tgrs.2006.872081.

GGWS (Golden Gate Weather Services). El Niño and La Niña Years and Intensities. 2021. Disponível em: https://ggweather.com/enso/oni.htm. Acesso em: 22 maio 2021.

IBRAHIM, S.; BALZTER, H. Evaluating flood damage to paddy rice fields using PlanetScope and Sentinel-1 data in north-western Nigeria: Towards potential climate adaptation strategies. Remote Sensing, v. 16, n. 3657, 2024. https://doi.org/10.3390/rs16193657

JANUAR, T. W.; LIN, T.; HUANG, C.; CHANG, K. Modifying an Image Fusion Approach for High Spatiotemporal LST Retrieval in Surface Dryness and Evapotranspiration Estimations. Remote Sensing, v. 12, n. 3, p. 498, 2020. MDPI AG. http://dx.doi.org/10.3390/rs12030498.

JERSZURKI, D.; SOUZA, J. L. M.; SILVA, L. C. R. Expanding the geography of evapotranspiration: an improved method to quantify land-to-air water fluxes in tropical and subtropical regions. PLOS ONE, v. 12, n. 6, p. 1-20, 2017. Public Library of Science (PLOS). http://dx.doi.org/10.1371/journal.pone.0180055.

KE, Y. I. M, J.; PARK, S.; GONG, H. Spatiotemporal downscaling approaches for monitoring 8-day 30 m actual evapotranspiration. Isprs Journal of Photogrammetry and Remote Sensing, v. 126, p. 79-93, 2017. Elsevier BV. http://dx.doi.org/10.1016/j.isprsjprs.2017.02.006.

LI, Y.; HUANG, C.; HOU, J.; GU, J.; ZHU, G.; LI, X. Mapping daily evapotranspiration based on spatiotemporal fusion of ASTER and MODIS images over irrigated agricultural areas in the Heihe River Basin, Northwest China. Agricultural and Forest Meteorology, v. 244-245, p. 82-97, 2017. Elsevier BV. http://dx.doi.org/10.1016/j.agrformet.2017.05.023.

MATZENAUER, R.; BERLATO, M. A.; SAMPAIO, M. R.; TRINDADE, J. K. Efeitos do fenômeno Enos sobre a evapotranspiração de referência na região do Planalto Médio do Rio Grande do Sul, Brasil. Pesq. Agrop. Gaúcha, v. 14, n. 1, p. 67-70, 2008.

MENESES, P. R.; ALMEIDA, T. Introdução ao processamento de imagens de sensoriamento remoto. Bahia: Cnpq, 2012. 276 p.

MEYER, D.; RIECHERT, M. Open source QGIS toolkit for the Advanced Research WRF modelling system. Environmental Modelling & Software, v. 112, p. 166-178, 2019. Elsevier BV. http://dx.doi.org/10.1016/j.envsoft.2018.10.018.

MEZA, F. J. Variability of reference evapotranspiration and water demands. Association to ENSO in the Maipo river basin, Chile. Global and Planetary Change, v. 47, n. 2-4, p. 212-220, 2005. Elsevier BV. http://dx.doi.org/10.1016/j.gloplacha.2004.10.013.

NAGEL, G. W.; NOVO, E. M. L. M.; KAMPEL, M. Nanosatellites applied to optical Earth observation: a review. Ambiente e Água, v. 15, n. 3, e2513, 2020. https://doi.org/10.4136/ambi-agua.2513

PAREDES, P.; TRIGO, I.; BRUIN, H.; SIMÕES, N.; PEREIRA, L. S. Daily grass reference evapotranspiration with Meteosat Second Generation shortwave radiation and reference ET products. Agricultural Water Management, v. 248, p. 106543, 2021. Elsevier BV. http://dx.doi.org/10.1016/j.agwat.2020.106543.

PAULA, A. C. P.; SILVA, C. L.; RODRIGUES, L. N.; SCHERER-WARREN, M. Performance of the SSEBop model in the estimation of the actual evapotranspiration of soybean and bean crops. Pesquisa Agropecuária Brasileira, v. 54, p. 1-11, 2019. FapUNIFESP (SCIELO). http://dx.doi.org/10.1590/s1678-3921.pab2019.v54.00739.

ROGERS, S. R; STAUB, B. Standard use of Geographic Information System (GIS) techniques in honey bee research. Journal of Apicultural Research, v. 52, n. 4, p. 1-48, 2013. Informa UK Limited. http://dx.doi.org/10.3896/ibra.1.52.4.08.

ROSA, S. L. K.; SOUZA, J. L. M.; SANTOS, A. A. Data from NASA Power and surface weather stations under different climates on reference evapotranspiration estimation. Pesquisa Agropecuária Brasileira, v. 58; e03261, 2023. https://doi.org/10.1590/s1678-3921.pab2023.v58.03261

SHIMIZO, K.; OTA, T.; MIZOUE, N.; SAITO, H. Comparison of multi-temporal PlanetScope data with Landsat 8 and Sentinel-2 data for estimating airborne LiDAR derived canopy height in temperate forests. Remote Sensing, v. 12, n. 1876, 2020. https://doi.org/10.3390/rs12111876.

SILVA, D. P. Associação espaço-temporal de variáveis meteorológicas com técnicas de sensoriamento remoto para estimativa da evapotranspiração. Curitiba, 2021. 173p. Dissertação (Mestrado em Agronomia, área de concentração Ciência do Solo) – Setor de Ciências Agrárias, Universidade Federal do Paraná. Disponível em: https://acervodigital.ufpr.br/handle/1884/74849 Acesso em: 02 agosto 2024

TALSMA, C. J.; GOOD, S. P.; JIMENEZ, C.; MARTENS, B.; FISHER, J. B.; MIRALLES, D. G.; MCCABE, M. F.; PURDY, A. J. Partitioning of evapotranspiration in remote sensing-based models. Agricultural and Forest Meteorology, v. 260-261, p. 131-143, 2018. Elsevier BV. http://dx.doi.org/10.1016/j.agrformet.2018.05.010.

WALKER, J. J.; BEURS, K. M.; WYNNE, R. H.; GAO, F. Evaluation of Landsat and MODIS data fusion products for analysis of dryland forest phenology. Remote Sensing of Environment, v. 117, p. 381-393, 2012.

WANG, P.; GAO, F.; MASEK, J. G. Operational data fusion framework for building frequent Landsat-like imagery. IEEE Transactions on Geoscience and Remote Sensing, v. 52, n. 11, 2014. http://dx.doi.org/10.1109/TGRS.2014.2311445

WANG, T.; TANG, R.; LI, Z.; JIANG, Y.; LIU, M.; NIU, L. An Improved Spatio-Temporal Adaptive Data Fusion Algorithm for Evapotranspiration Mapping. Remote Sensing, v. 11, n. 7, p. 761, 2019. MDPI AG. http://dx.doi.org/10.3390/rs11070761.

YANG, G.; WENG, Q.; PU, R.; GAO, F.; SUN, C.; LI, H.; ZHAO, C. Evaluation of ASTER-Like Daily Land Surface Temperature by Fusing ASTER and MODIS Data during the HiWATER-MUSOEXE. Remote Sensing, v. 8, n. 1, p. 75, 2016. MDPI AG. http://dx.doi.org/10.3390/rs8010075.

YI, Z.; ZHAO, H.; JIANG, Y. Continuous Daily Evapotranspiration Estimation at the Field-Scale over Heterogeneous Agricultural Areas by Fusing ASTER and MODIS Data. Remote Sensing, v. 10, n. 11, p. 1694, 2018. MDPI AG. http://dx.doi.org/10.3390/rs10111694.

ZHU, X.; CHEN, J.; GAO, F.; CHEN, X.; MASEK, J. G. An enhanced spatial and temporal adaptive reflectance fusion model for complex heterogeneous regions. Remote Sensing of Environment, v. 114, n. 11, p. 2610-2623, 2010. Elsevier BV. http://dx.doi.org/10.1016/j.rse.2010.05.032.

Downloads

Publicado

2025-04-28

Como Citar

Souza, J. L. M. de, Pinheiro da Silva, D., & Jerszurki, D. (2025). Spatiotemporal variability of reference evapotranspiration estimated using satellite images in the Tibagi River Basin, Paraná State, Brazil. Ra’e Ga: O Espaço Geográfico Em Análise, 62(1), 44–66. https://doi.org/10.5380/raega.v62i1.98349

Edição

Seção

Artigos