MOBILE MEASUREMENTS WITH BICYCLES: A SYSTEMATIC REVIEW APPLIED TO THE THERMAL ENVIRONMENT OF URBAN MICROCLIMATES
DOI:
https://doi.org/10.5380/raega.v61i1.96807Palavras-chave:
Urban Thermal Environment, Environmental Variables, Thermal Effects, Urban Microclimate, Urban Climate MethodsResumo
This study concerns in to collect, via a systematic review, papers from international academic researches that employed bicycles only to collect primary data on environmental variables for research on microclimatic thermal problems in urban contexts and others. Three international article search platforms were used. After reading the titles, abstracts, and entire works, 13 articles were chosen that employed bicycles in their mobile transects between 2011 and 2023. The analytical methodologies connected them to the thermal environment employed by the research, such as the primary characterizers of urban morphology, were visible from this. It is worth emphasizing that, while the platforms offer outstanding results in terms of article discovery, it is know that there are additional publications that employed similar technique but did not appear in the platforms' results. Six more items were discovered that were absent from the chosen search engines. It is significant to observe that, after looking over the 19 articles, the most part of them were only released in the past 25 years, with the oldest being found in 1998. Research has indicated that the use of bicycles to collect environmental data is related to the possibility that bicycles are more accessible than cars and more safety than walking along cities, moreover, this approach is less expensive. Apart from the several benefits that studies utilizing this methodology observed, it is believed that bicycles would be a more environmentally responsible and sustainable mode of transportation than alternatives. In this manner, it is hoped that additional research utilizing the effective mobile measurement technique with bicycles would be carried out in the future.
Referências
ALBUQUERQUE, M. M.; LOPES, W. G. R. Influência da vegetação em variáveis climáticas: estudo em bairros da cidade de Teresina, Piauí. Revista Ra'e Ga Espaço Geográfico em Análise, v. 36, p. 38-68, 2016. http://dx.doi.org/10.5380/raega.v36i0.39719.
ALONSO, L.; RENARD, F. A new approach for understanding urban microclimate by integrating complementary predictors at different scales in regression and machine learning models. Remote Sensing, v. 12, p. 2434, 2020. https://doi.org/10.3390/rs12152434.
AULICIEMS, A. Human Bioclimatology. Berlin/Heidelberg, Germany: Springer, 1998. Volume 5.
BRANDENBURG, C.; MATZARAKIS, A.; ARNBERGER, A. The effects of weather on frequencies of use by commuting and recreation bicyclists. Advances in Tourism Climatology, v. 12, p. 189–197, 2004.
BRANDSMA, T.; WOLTERS, D. Measurement and statistical modeling of the urban heat island of the city of Utrecht (the Netherlands). Journal of Applied Meteorology and Climatology, v. 51, p. 1046–1060, 2012. https://doi.org/10.1175/JAMC-D-11-0206.1.
CARRERAS, H., EHRNSPERGER, L.; KLEMM, O.; PAAS, B. Cyclists’ exposure to air pollution: In situ evaluation with a cargo bike platform. Environmental Monitoring and Assessment, v. 192, p. 470, 2020. https://doi.org/10.1007/s10661-020-08443-7.
CHOW, W. T. L. POPE, R. L., MARTIN, C. A.; BRAZEL, A. J. Observing and modeling the nocturnal park cool island of an arid city: Horizontal and vertical impacts. Theoretical and Applied Climatology, v. 103, p. 197-211, 2011. https://doi.org/10.1007/s00704-010-0293-8.
CONNECTED PAPERS. Disponível em: https://www.connectedpapers.com. Acesso em: 9 abr. 2024.
CORREA, W. S. C.; VALE, C. C. Contribuição à compreensão do campo térmico da regional Praia do Canto em Vitória (ES) pela metodologia de transectos. Revista Ra'e Ga Espaço Geográfico em Análise, v. 38, p. 50-81, 2016. http://dx.doi.org/10.5380/raega.v38i0.41854.
CROCE, S.; TONDIN, S. Fixed and mobile low-cost sensing approaches for microclimate monitoring in urban areas: A preliminary study in the city of Bolzano (Italy). Smart Cities, v. 5, p. 54–70, 2022. https://doi.org/10.3390/smartcities5010004.
DEMUZERE, M.; KITTNER, J.; BECHTEL, B. LCZ Generator: A web application to create local climate zone maps. Frontiers in Environmental Science, v. 9, p. 637455, 2021. https://doi.org/10.3389/fenvs.2021.637455.
DRACH, P.; DRACH, H. Mobile meteorological survey station: Applying measurement tools on a bike to create the Meteobike. In: Proceedings of 8th Windsor Conference: Counting the Cost of Comfort in a Changing World. Cumberland Lodge, Windsor, UK, 10-13 abr. 2014. London: Network for Comfort and Energy Use in Buildings.
EGUILUZ, A. HERNANDEZ-JAYO, U., CASADO-MANSILLA, D., LOPEZ-DE-IPINA, D., MORAN, A. E. Design and implementation of an open-source urban mobility web service based on environmental quality and bicycle mobility data. In: 2022. 7th International Conference on Smart and Sustainable Technologies (SpliTech). p. 1-5. IEEE, 2022. https://doi.org/10.23919/SpliTech55088.2022.9854330.
EMERY, J., POHL, B., CRÉTAT, J., RICHARD, Y., PERGAUD, J., REGA, M., ZITO, S., DUDEK, J., VAIRET, T., JOLY, D., THÉVENIN, T. How local climate zones influence urban air temperature: Measurements by bicycle in Dijon, France. Urban Climate, v. 40, p. 101017, 2021. https://doi.org/10.1016/j.uclim.2021.101017.
GOBO, J. P. A.; ALVES, R. R.; SILVEIRA, T. S.; ONCA, D. S.; MONTEIRO, L. M.; WOLLMANN, C. A.; GALVANI, E. A influência do vento regional na sensação térmica de pedestres em espaços urbanos abertos: estudo de caso do vento norte em Santa Maria-RS. Revista Ra'e Ga Espaço Geográfico em Análise, v. 40, p. 110-129, 2017. http://dx.doi.org/10.5380/raega.v40i0.46042.
HEUSINKVELD, B. G., STEENEVELD, G. J., VAN HOVE, L. W. A., JACOBS, C. M. J., HOLTSLAG, A. A. M. Spatial variability of the Rotterdam urban heat island as influenced by urban land use. Journal of Geophysical Research: Atmospheres, v. 119, p. 677–692, 2014. https://doi.org/10.1002/2012JD019399.
HIGGINS, J.; GREEN, S. (Ed.). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0 [updated March 2011]. The Cochrane Collaboration, 2011.
KIM, H.; KIM, S. W.; JO, Y.; KIM, E. J. Findings from a field study of urban microclimate in Korea using mobile meteorological measurements. Open House International, 2022. Epub ahead of printing. https://doi.org/10.1108/OHI-12-2021-0280.
KLEMM, W., HEUSINKVELD, B. G., LENZHOLZER, S., JACOBS, M. H., VAN HOVE, B. Psychological and physical impact of urban green spaces on outdoor thermal comfort during summertime in The Netherlands. Building and Environment, v. 83, p. 120–128, 2015. https://doi.org/10.1016/j.buildenv.2014.05.013.
KOOPMANS, S.; HEUSINKVELD, B. G.; STEENEVELD, G. J. A standardized physical equivalent temperature urban heat map at 1-m spatial resolution to facilitate climate stress tests in the Netherlands. Building and Environment, v. 181, p. 012046, 2020. https://doi.org/10.1016/j.buildenv.2020.106984.
KOTTEK, M.; GRIESER, J.; BECK, C.; RUDOLF, B.; RUBEL, F. World map of the Köppen-Geiger climate classification updated. Meteorologische Zeitschrift, v. 15, p. 259–263, 2006. https://doi.org/10.1127/0941-2948/2006/0130.
KRÜGER, E. L.; RASIA, F.; MINELLA, F. O. Impactos microclimáticos do desenho urbano: estudos realizados em Curitiba. Revista Ra'e Ga Espaço Geográfico em Análise, v. 21, p. 298-336, 2011. http://dx.doi.org/10.5380/raega.v21i0.17760.
KUMAR, P., RIVAS, I., SINGH, A. P., GANESH, V. J., ANANYA, M., FREY, H. C. Dynamics of course and fine particle exposure in transport microenvironments. NPJ Climate and Atmospheric Science, v. 1, p. 11, 2018. https://doi.org/10.1038/s41612-018-0023-y.
LOBATO, G. J. M.; MARTORANO, L. G.; LUCAS, F. C. A.; TAVARES-MARTINS, A. C. C.; JARDIM, M. A. G. Condições térmico-hídricas e percepções de conforto ambiental em quintais urbanos de Abaetetuba, Pará, Brasil. Revista Ra'e Ga Espaço Geográfico em Análise, v. 38, p. 245-268, 2016. http://dx.doi.org/10.5380/raega.v38i0.43705.
MATZARAKIS, A.; RUTZ, F.; MAYER, H. Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. International Journal of Biometeorology, v. 54, n. 2, p. 131–139, 2010. http://dx.doi.org/10.1007/s00484-009-0261-0.
MAY, S.; OLIPHANT, A. J. Characteristics of the park cool island in Golden Gate Park, San Francisco. Theoretical and Applied Climatology, v. 151, p. 1269–1282, 2023. https://doi.org/10.1007/s00704-022-04296-x.
MICHAL, L., JOSEF, K., JAN, G., MARTIN, J., JINDŘICH, F. Identifying hot and cool spots in the city centre based on bicycle measurements: The case of Olomouc, Czech Republic. Geographica Pannonica, v. 22, p. 230–240, 2018. https://doi.org/10.5937/gp22-19750.
NASTOS, P. T., MOUSTRIS, K. P., CHARALAMPOPOULOS, I., LARISSI, I. K., PALIATSOS, A. G. Assessment of the thermal comfort conditions in a university campus using a 3D microscale climate model, utilizing mobile measurements. In: Perspectives on Atmospheric Sciences. Springer Atmospheric Sciences; KARACOSTAS, T.; BAIS, A.; NASTOS, P. (Eds.). Cham, Switzerland: Springer, 2017. https://doi.org/10.1007/978-3-319-35095-0_43.
NIKOLOPOULOU, M. Outdoor thermal comfort. Frontiers in Bioscience - Scholar, v. 3, p. 1552–1568, 2011. https://doi.org/10.2741/245.
OKE, T. R.; MILLS, G.; CHRISTEN, A.; VOOGT, J. Urban Climates. Cambridge, UK: Cambridge University Press, 2017. https://doi.org/10.1017/9781139016476.
OKE, T. R. Boundary Layer Climates. New York, NY, USA: Routledge, 1978. 464 p.
PARSONS, K. Human Thermal Environments: The Effects of Hot, Moderate, and Cold Environments on Human Health, Comfort and Performance. 3. ed. Boca Raton, FL, USA: CRC Press, 2014. 635 p. https://doi.org/10.1201/b16750.
PAUL, J.; CRIADO, A. R. The art of writing literature review: What do we know and what do we need to know? International Business Review, v. 29, p. 101717, 2020. https://doi.org/10.1016/j.ibusrev.2020.101717.
PFAUTSCH, S.; WUJESKA-KLAUSE, A.; WALTERS, J. R. Measuring local-scale canopy-layer air temperatures in the built environment: A flexible method for urban heat studies. Computers, Environment and Urban Systems, v. 99, p. 101913, 2023. https://doi.org/10.1016/j.compenvurbsys.2022.101913.
RAJKOVICH, N. B.; LARSEN, L. A bicycle‐based field measurement system for the study of thermal exposure in Cuyahoga County, Ohio, USA. International Journal of Environmental Research and Public Health, v. 13, p. 159, 2016. https://doi.org/10.3390/ijerph13020159.
RIBEIRO, C. R.; GONÇALVES, A. P.; BASTOS, F. P. Ilhas de calor urbanas e conforto térmico humano em cidades de porte médio: estudo aplicado em Juiz de Fora (MG). Revista Ra'e Ga Espaço Geográfico em Análise, v. 45, p. 281-300, 2018. http://dx.doi.org/10.5380/raega.v45i1.51262.
ROSSI, F. A.; KRÜGER, E. L.; GUIMARÃES, E. A. Modelo preditivo de sensação térmica em espaços abertos em Curitiba, PR. Revista Ra'e Ga Espaço Geográfico em Análise, v. 29, p. 209-238, 2013. http://dx.doi.org/10.5380/raega.v29i0.32906.
ROSSI, F. A.; KRÜGER, E. L. Análise da variação de temperaturas locais em função das características de ocupação do solo em Curitiba. Revista Ra'e Ga Espaço Geográfico em Análise, v. 10, p. 93-105, 2005. http://dx.doi.org/10.5380/raega.v10i0.3377.
SAMPAIO, R. F.; MANCINI, M. C. Estudos de revisão sistemática: Um guia para síntese criteriosa da evidência científica. Revista Brasileira de Fisioterapia, v. 11, n. 1, p. 83-89, 2007. https://doi.org/10.1590/S1413-35552007000100013.
SCIENCE DIRECT. Disponível em: https://www.sciencedirect.com/. Acesso em: 9 abr. 2024.
SCOPUS. Disponível em: https://www.scopus.com/home.uri. Acesso em: 9 abr. 2024.
SPRONKEN-SMITH, R. A.; OKE, T. R. The thermal regime of urban parks in two cities with different summer climates. International Journal of Remote Sensing, v. 19, p. 2085–2104, 1998. https://doi.org/10.1080/014311698214884.
STEWART, I. D.; OKE, T. R. Local climate zones for urban temperature studies. Bulletin of the American Meteorological Society, v. 93, p. 12, 2012. https://doi.org/10.1175/BAMS-D-11-00019.1.
STEWART, I. D. A systematic review and scientific critique of methodology in modern urban heat island literature. International Journal of Climatology, v. 31, n. 2, p. 200-217, 2011. https://doi.org/10.1002/joc.2141.
VANOS, J. K., KOSAKA, E., IIDA, A., YOKOHARI, M., MIDDEL, A., SCOTT-FLEMING, I. BROWN, R. D. Planning for spectator thermal comfort and health in the face of extreme heat: The Tokyo 2020 Olympic marathons. Science of The Total Environment, v. 657, p. 904–917, 2019. https://doi.org/10.1016/j.scitotenv.2018.11.447.
VASILIKOU, C.; NIKOLOPOULOU, M. Outdoor thermal comfort for pedestrians in movement: Thermal walks in complex urban morphology. International Journal of Biometeorology, v. 64, p. 277–291, 2020. https://doi.org/10.1007/s00484-019-01782-2.
VIEIJRA, M., VERGAUWEN, T., TOP, S., HAMDI, R., CALUWAERTS, S. Land cover aware temperature correction of bicycle transects: A case study of mapping the air temperature in two Belgian cities. Urban Climate, v. 101578, 2023. https://doi.org/10.1016/j.uclim.2023.101578.
WAI, C. Y.; TARIQ, M. A. U. R.; MUTTIL, N. A systematic review on the existing research, practices, and prospects regarding urban green infrastructure for thermal comfort in a high-density urban context. In: Proceedings of 8th Windsor Conference: Counting the Cost of Comfort in a Changing World. Cumberland Lodge, Windsor, UK, 10-13 abr. 2014. London: Network for Comfort and Energy Use in Buildings. https://doi.org/10.3390/w14162496.
WRITZL, L.; WOLLMANN, C. A.; COSTA, I. T.; GOBO, J. P. A.; SHOOSHTARIAN, S.; MATZARAKIS, A. Outdoor human thermal comfort along bike paths in Balneário Camboriú/SC, Brazil. Atmosphere, v. 13, p. 2092, 2022. https://doi.org/10.3390/atmos13122092.
ZITER, C. D., PEDERSEN, E. J., KUCHARIK, C. J., TURNER, M. G. Scale-dependent interactions between tree canopy cover and impervious surfaces reduce daytime urban heat during summer. Proceedings of the National Academy of Sciences USA, v. 116, p. 7575, 2019. https://doi.org/10.1073/pnas.1817561116.
ZHAO, G.; PANG, X.; LI, J.; XING, B.; SUN, S.; CHEN, L.; LU, Y.; SUN, Q.; SHANG, Q.; WU, Z.; YUAN, K.; WU, H.; DING, S.; LI, H.; LIU, Y. Temporal variations and spatial distribution of air pollutants in Shaoxing, a city in Yangtze Delta, China based on mobile monitoring using a sensor package. Atmosphere, v. 14, p. 1093, 2023. https://doi.org/10.3390/atmos14071093.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Declaro que o ARTIGO submetido é INÉDITO, ORIGINAL e de MINHA RESPONSABILIDADE. Declaro que o artigo não foi submetido ou está em avaliação em outra revista/periódico.
Estou ciente dos itens presentes na LEI Nº 9.610/98 (DIREITOS AUTORAIS) e me responsabilizo por quaisquer problemas relacionados a PLÁGIO.
Estou ciente de que o artigo submetido poderá ser removido da Revista, caso se observe A QUALQUER TEMPO que ele se encontra publicado integralmente ou em parte em outro PERIÓDICO científico.
Declaro, COMO PRIMEIRO AUTOR, que os demais autores do trabalho estão cientes desta submissão e de que NÃO receberão qualquer tipo de remuneração pela divulgação do trabalho.
Como primeiro autor, autorizo, de antemão, a RA’E GA - O Espaço Geográfico em Análise(ISSN 2177-2738), a publicar o artigo, caso aceito.
