IDENTIFICATION OF SUITABLE AREAS FOR THE INSTALLATION OF HYDROELECTRIC PROJECTS BASED ON THE STREAM-POWER MODEL

Autores

DOI:

https://doi.org/10.5380/raega.v58i0.93382

Palavras-chave:

Small Hydroelectric Power Plants, Knickpoints, Energy, Meia Ponte River

Resumo

Hydropower is mostly driven by the river discharge and the gradient slope of the river channels. These two parameters constitute a classical geomorphological model, known as stream-power. Based on the stream-power model, this study aims to identify locations with greater potential for the installation of Small Hydroelectric Power Plants (SHPs) in the Meia Ponte River basin, situated in the central-southern region of the State of Goiás, in Brazil. To achieve this, hydrological data from six hydrometric stations and the Copernicus digital elevation model were utilized to pinpoint areas with higher river power. The results revealed 161.46 km of segments with river power ranging from 5000 to 30000 kW · m-1 and 23 points characterized by pronounced changes in channel slope, indicating a suitable potential for SHP installation. Besides the river-related data considered in this study, future research should encompass various other aspects, including environmental, social, economic, operational, and cultural factors when searching for the best locations for SHP installations.

Biografia do Autor

Alexandre Xavier Alves, Instituto Federal de Goiás (IFG), Goiânia, Goiás

Graduated in Environmental and Sanitary Engineering from the Federal Institute of Education, Science, and Technology of Goiás (IFG).

Édipo Henrique Cremon, Instituto Federal de Goiás - IFG (Campus Goiânia)

Geógrafo pela Universidade Estadual de Maringá e membro do Grupo de Estudos Multidisciplinares do Ambiente (GEMA) pela mesma universidade. Mestre e Doutor em Sensoriamento Remoto pelo Instituto Nacional de Pesquisas Espaciais-INPE, com período de doutorado sanduíche na University of Exeter (Reino Unido). Recebeu o prêmio Jovem Geomorfólogo (2014) e melhor tese em geomorfologia (2016), conferido pela União da Geomorfologia Brasileira (UGB). Atualmente é Professor Efetivo do Instituto Federal de Goiás-IFG (Campus Goiânia) e atua principalmente nos temas: geomorfologia fluvial e tectônica, Quaternário continental, mapeamento de uso e cobertura da terra, modelagem ambiental.

Fabio Corrêa Alves, Universidade Federal do Oeste da Bahia (UFOB), Barreiras, Bahia

Has a degree in Geography (Bachelor) from the State University of Maringá - UEM (2013), master's (2015), and Ph.D. (2021) in Remote Sensing from the National Institute for Space Research - INPE, with a sandwich internship period (2019-2020) at the University of Plymouth, England. Has expertise in Geoprocessing and Geotechnologies, with a focus mainly on Remote Sensing and its applications in Geosciences, working on topics such as physical environment analysis, geological and geomorphological investigation of river landscapes, including passive continental margins and large Amazon basins, relief modeling, and information extraction from topographic metrics.

Max Well de Oliveira Rabelo, Instituto Federal de Goiás (IFG), Goiânia, Goiás

Has a degree in Agronomic Engineering from the Federal University of Goiás (UFG), specialization in Georeferencing of Rural Properties from the Technological Institute of the Midwest (ITCO). Holds a Master's and Ph.D. in Agronomy, specializing in Soil and Water from UFG. Is an Associate Professor at the Federal Institute of Education, Science, and Technology of Goiás (IFG) in the Geomatics area, teaching courses in Topography, Remote Sensing, and Geoprocessing.

Referências

AIRBUS. Copernicus Digital Elevation Model - Product Handbook. 2.1. ed. 2020. Available at: https://bit.ly/3ASmKZ2. Accessed 05 abr 2021.

ALVES, L. B. Energias Renováveis: análise da geração fotovoltaica no Brasil e Goiás. 2018. Available at: https://bit.ly/3GECUrM. Accessed 04 jan 2022.

ANEEL. AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Resolução Normativa nº 875. 2020. Available at: https://www.in.gov.br/web/dou/-/resolucao-normativa-n-875-de-10-de-marco-de-2020-248070610. Accessed 27 jan 2022.

ANEEL. AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Sistema de Informações Geográficas do Setor Elétrico - SIGEL. 2021. Available at: https://sigel.aneel.gov.br/portal/home/. Accessed 27 jan 2022.

BAGNOLD, R. A. An approach to the sediment transport problem from general physics. USGS Professional Paper, p. 1-42, 1966. DOI: 10.3133/pp422I.

BETTIOL, G. M.; FERREIRA, M. E.; MOTTA, L. P.; CREMON, É. H.; SANO, E. E. Conformity of the nasadem_hgt and alos aw3d30 dem with the altitude from the brazilian geodetic reference stations: A case study from brazilian cerrado. Sensors, v. 21, n. 9, p. 2935, 2021. DOI: 10.3390/s21092935.

BOF, L. H. N.; SOUSA, H. T.; PRUSKI, F. F. Sistema computacional para análises hidrológicas. XVIII Simpósio Brasileiro de Recursos Hídricos, p. 13, nov 2009.

BOULTON, S. J. Geomorphic response to differential uplift: River long profiles and knickpoints from Guadalcanal and Makira (Solomon Islands). Front. Earth Sci., v. 8, p. 1–23, 2020. DOI: 10.3389/feart.2020.00010.

CREMON, É. H.; BETTIOL, G. M.; JUNIOR, J. P. M.; MACEDO, F. C.; RABELO , M. W. O. Avaliação da altimetria do MDE COP-30 no Centro-Oeste do Brasil. Revista Brasileira de Cartografia, v. 74, n. 3, p. 536–546, 2022. DOI: 10.14393/rbcv74n3-60846.

CUYA, D. G. P.; BRANDIMARTE, L.; POPESCU, I.; ALTERACH, J.; PEVIANI, M. A GIS-based assessment of maximum potential hydropower production in la plata basin under global changes. Renewable energy, v. 50, p. 103–114, 2013. DOI: 10.1016/j.renene.2012.06.019.

EUROPEAN SPACE AGENCY. Copernicus Global Digital Elevation Model. 2021. Available at: https://doi.org/10.5069/G9028PQB. Accessed 05 fev 2021.

GOVERNO DO ESTADO DE SÃO PAULO - SECRETARIA DE ENERGIA E MINERAÇÃO. Levantamento do potencial hidrelétrico remanescente no estado de São Paulo. 2016. Available at: https://bit.ly/3KdukCF. Accessed 04 jan 2022.

GUTH, P. L; GEOFFROY, T. M. Lidar point cloud and icesat-2 evaluation of 1 second global digital elevation models: Copernicus wins. Transactions in GIS, v. 25, n. 5, p. 2245–2261, 2021. DOI: 10.1111/tgis.12825.

HIDAYAH, E.; INDARTO; WAHYUNI, S. Proposed method to determine the potential location of hydropower plant: application at rawatamtu watershed, east java. Procedia engineering, v. 171, p. 1495–1504, 2017.

JAIN, V.; PRESTON, N.; FRYIRS, K.; BRIERLEY, G. Comparative assessment of three approaches for deriving stream power plots along long profiles in the upper Hunter River catchment, New South Wales, Australia. Geomorphology, v. 74, n. 1-4, p. 297–317, 2006. DOI: 10.1016/j.geomorph.2005.08.012.

JARDIM, A. C. Direções de fluxo em modelos digitais de elevação: um método com foco na qualidade da estimativa e processamento de grande volume de dados. 133 p. Tese (Doutorado) — Instituto Nacional de Pesquisas Espaciais (INPE), São José dos Campos, 2017-04-07 2017. Available at: http://urlib.net/rep/8JMKD3MGP3W34P/3NT7EN5. Accessed 27 sept. 2021.

LARENTIS, D. G.; COLLISCHONN, W.; OLIVERA, F.; TUCCI, C. E. M. GIS-based procedures for hydropower potential spotting. Energy, v. 35, n. 10, p. 4237–4243, 2010. DOI: 10.1016/j.energy.2010.07.014.

NAGHETTINI, M.; PINTO, É. J. A. Hidrologia Estatística. Belo Horizonte: CPRM, 2007.

ONS. OPERADOR NACIONAL DO SISTEMA ELÉTRICO. Escassez Hídrica. 2021. Available at: http: //www.ons.org.br/Paginas/Noticias/20210707-escassez-hidrica-2021.aspx. Accessed 27 jan 2022.

PEIFER, D.; CREMON, É. H.; ALVES, F. C. Ferramentas modernas para a extração de métricas de gradientes fluviais a partir de mdes: uma revisão. Revista Brasileira de Geomorfologia, v. 21, n. 1, 2020. DOI: 10.20502/rbg.v21i1.1732

PEIFER, D.; CREMON, É. H.; VAL, P.; FERNANDES, N. F. Bases teóricas do modelo stream-power de incisão fluvial. Revista Brasileira de Geomorfologia, v. 23, n. 2, p. 1512–1523, 2022. DOI: 10.20502/rbg.v23i2.2143.

ROSA, P.; FREDDUZZI, A.; CENCETTI, C. Stream power determination in gis: An index to evaluate the most’sensitive’points of a river. Water, v. 11, n. 6, p. 1145, 2019. DOI: 10.3390/w11061145

SANTOS, T.; SANTOS, L.; ALBUQUERQUE, R.; CORRÊA, E. Belo Monte: impactos sociais, ambientais, econômicos e políticos. Tendencias, v. 13, n, 2, p. 214-227, 2012.

SANTOS, J. G. R.; VESPUCCI, A. G.; BAYER, M. Estações fluviométricas do estado de Goiás: qualificação dos dados hidrológicos disponíveis na base HIDROWEB/ANA. Ateliê Geográfico, v. 10, n. 3, p. 89–108, 2017. DOI: 10.5216/ag.v10i3.35554.

SECRETARIA DE MEIO AMBIENTE, RECURSOS HÍDRICOS, INFRAESTRUTURA, CIDADES E ASSUNTOS METROPOLITANOS - GOVERNO DO ESTADO DE GOIÁS (SEMAD). Planos de Recursos Hídricos das Unidades de Planejamento e Gestão de Recursos Hídricos do Estado de Goiás Afluentes ao Rio Paranaíba, Diagnóstico da UPGRH do Rio Meia Ponte. 2010. Available at: http://pbapgo.meioambiente.go.gov.br/. Accessed 27 jan 2022.

SECRETARIA DE MEIO AMBIENTE, RECURSOS HÍDRICOS, INFRAESTRUTURA, CIDADES E ASSUNTOS METROPOLITANOS - GOVERNO DO ESTADO DE GOIÁS (SEMAD). Caracterização da Bacia do Rio Meia Ponte. 2019. Available at: https://www.meioambiente.go.gov.br/noticias/1592-bacia_meiaponte.html. Accessed 27 jan 2022. 6, 10

SCHWANGHART, W.; SCHERLER, D. TopoToolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences, Earth Surf. Dynam., v. 2, p. 1–7, 2014. DOI: 10.5194/esurf-2-1-2014.

SCHWANGHART, W.; SCHERLER, D. Bumps in river profiles: uncertainty assessment and smoothing using quantile regression techniques, Earth Surf. Dynam., v. 5, p. 821–839, 2017. DOI: 10.5194/esurf-5-821-2017.

STOLLE, A.; SCHWANGHART, W.; ANDERMANN, C.; BERNHARDT, A.; FORT, M.; JANSEN, J. D.; WITTMANN, H.; MERCHEL, S.; RUGEL, G.; ADHIKARI, B. R.; KORUP, O., 2019. Protracted river response to medieval earthquakes. Earth Surface Processes and Landforms, v. 44, n. 1, p. 331-341, 2019. DOI: 10.1002/esp.4517.

TARBOTON, D. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, v. 33, p. 309–319, 1997. DOI: 10.1029/96WR03137.

TerraHidro Development Team. TerraHidro. 2019. Available at: http://wiki.dpi.inpe.br/doku.php?id=download.

TIAN, Y.; ZHANG, F.; YUAN, Z.; CHE, Z.; ZAFETTI, N. Assessment power generation potential of small hydropower plants using GIS software. Energy Reports, v. 6, p. 1393–1404, 2020. DOI: 10.1016/j.egyr.2020.05.023

TORREFRANCA, I; OTADOY, R. E.; TONGCO, A. Incorporating Landscape Dynamics in Small-Scale Hydropower Site Location Using a GIS and Spatial Analysis Tool: The Case of Bohol, Central Philippines. Energies, v. 15, n. 3, 1130, 2022. DOI: 10.3390/en15031130.

WEGNER, N.; MERCANTE, E.; MENDES, I. S.; GANASCINI, D.; CORREA, M. M.; MAGGI, M. F.; BOAS, M. A. V.; WRUBLACK, S. C.; SIQUEIRA, J.A.C. Hydro energy potential considering environmental variables and water availability in paraná hydrographic basin 3. Journal of Hydrology, v. 580, 124183, 2020. DOI: 10.1016/j.jhydrol.2019.124183

ZAIDI, A. Z.; KHAN, M. Identifying high potential locations for run-of-the-river hydroelectric power plants using gis and digital elevation models. Renewable and Sustainable Energy Reviews, v. 89, p. 106–116, 2018. DOI: 10.1016/j.rser.2018.02.025

Downloads

Publicado

2023-12-23

Como Citar

Alves, A. X., Cremon, Édipo H., Alves, F. C., & Rabelo, M. W. de O. (2023). IDENTIFICATION OF SUITABLE AREAS FOR THE INSTALLATION OF HYDROELECTRIC PROJECTS BASED ON THE STREAM-POWER MODEL. RAEGA - O Espaço Geográfico Em Análise, 58, 3–19. https://doi.org/10.5380/raega.v58i0.93382

Edição

Seção

Artigos