Open Journal Systems

PAPEL DO FOSFATO NA DOENÇA CARDIOVASCULAR: MARCADOR OU CAUSADOR DE LESÃO?

Tammy V. R. Almeida, Ana Ludmilla Cancela, Rosa M. A. Moises, Fellype de Carvalho Barreto, Daniela Veit Barreto

Resumo


O fosfato (Pi) é um mineral essencial que participa de diversos processos metabólicos, como produção de energia e sinalização intracelular, além de ser um importante constituinte de diversos elementos celulares. A homeostase do Pi, estritamente regulada pelo paratormônio, pela vitamina D e pelo fator de crescimento fibroblástico – 23, sofre um grande desequilíbrio com a perda da função renal, culminando com o desenvolvimento de hiperfosfatemia. Nessa revisão abordaremos a fisiologia do Pi e o seu desequilíbrio causado pela disfunção renal, que se revela através do desenvolvimento da sobrecarga de Pi e da própria hiperfosfatemia. Discutiremos ainda as principais evidências clínicas e experimentais que apontam para o Pi como o mais novo vilão das doenças cardiovasculares tanto na população renal crônica quanto na geral. As estratégias terapêuticas devem ser voltadas sobretudo para a redução da ingestão de Pi, que encontra-se aumentada nos dias atuais devido a presença de conservantes à base desse elemento utilizados nos alimentos industrializados. Estudos populacionais são urgentemente necessários para testar de modo mais amplo os possíveis efeitos benéficos do controle da sobrecarga de Pi sobre o sistema cardiovascular.


Palavras-chave


Fosfato; Doença Cardiovascular

Texto completo:

PDF

Referências


Weisinger JR, Bellorín-Font E. Magnesium and phosphorus. Lancet. 1998; 352:391-6.

Iheagwara OS, Ing TS, Kjellstrand CM, Lew SQ. Phosphorus, phosphorous, and phosphate. Hemodial Int. 2013;17:479-82.

Gutierrez O, Isakova T, Rhee E, Shah A, Holmes J, Collerone G, Jüppner H, Wolf M. Fibroblast growth factor-23 mitigates hyperphosphatemia but accentuates calcitriol deficiency in chronic kidney disease J Am Soc Nephrol. 2005;16:2205-15.

Wolf M. Forging forward with 10 burning questions on FGF23 in kidney disease. J Am Soc Nephrol. 2010;21:1427-35.

Huang CL, Moe OW. Klotho: a novel regulator of calcium and phosphorus homeostasis. Pflugers Arch. 2011; 462:185-93.

Stubbs J, Liu S, Quarles LD. Role of fibroblast growth factor 23 in phosphate homeostasis and pathogenesis of disordered mineral metabolism in chronic kidney disease. Semin Dial. 2007;20:302-8.

Ellam TJ, Chico TJ.Phosphate: the new cholesterol? The role of the phosphate axis in non-uremic vascular disease. Atherosclerosis. 2012;220:310-8.

Block G A, Hulbert-Shearon TE, Levin NW, Port FK. Association of serum phosphorus and calcium x phosphorus product with mortality risk in chronic hemodialysis patients: A national study. Am J Kidney Dis 1998;31:607-17.

Tentori F, Blayney MJ, Albert JM et al. Mortality risk for dialysis patients with different levels of serum calcium, phosphorus, and PTH: The Dialysis Outcomes and Practice Patterns Study (DOPPS). Am J Kidney Dis 2008; 52:519-30.

Tonelli M, Sacks F, Pfeffer M et al. Relation between serum phosphate level and cardiovascular event rate in people with coronary disease. Circulation 2005; 112;2627-33.

Dhingra R, Sullivan LM, Fox CS et al. Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Inter Med 2007; 167:879-85.

Foley RN, Collins AJ, Ishani A et al. Calcium-phosphate levels and cardiovascular disease in community-dwelling adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am Heart J 2008; 156:556-63.

Jung HH, Kim SW, Han H. Inflammation, mineral metabolism and progressive coronary artery calcification in patients on haemodialysis Nephrol Dial Transplant 2006; 21:1915-20.

Adeney KL, Siscovick DS, Ix JH et al. Association of serum phosphate with vascular and valvular calcification in moderate CKD. J Am Soc Nephrol 2009; 20:381-7.

Narang R, Ridout D, Nonis C, Kooner JS. Serum calcium, phosphorus and albumin levels in relation to the angiographic severity of coronary artery disease. Int J Cardiol 1997; 60:73–9.

Rasouli M, Kiasari AM. Serum calcium and phosphorus associate with the occurrence and severity of angiographically documented coronary heart disease, possibly through correlation with atherogenic (apo)lipoproteins. Clin Chem Lab Med 2006; 44:43–50.

Foley RJ, Collins AJ, Herzog CA et al. Serum phosphorus levels associate with coronary atherosclerosis in young adults. J Am Soc Nephrol 2009; 20:397–404.

Tuttle KR, Short RA. Longitudinal relationships among coronary artery calcification, serum phosphorus and kidney function. Clin J Am Soc Nephrol 2009; 4:1968–73.

Cancela AL, Santos RD, Titan SM, et al. Phosphorus is associated with coronary artery disease in patients with preserved renal function. PLoS One 2012; 7(5):e36883.

Onufrak SJ, Bellasi A, Shaw LJ et al. Phosphorus levels are associated with subclinical atherosclerosis in the general population. Atherosclerosis 2008; 199:424-31.

Ruan L, Chen W, Srinivasan SR et al. Relation of serum phosphorus levels to carotid intima-media thickness in asymptomatic young adults (from the Bogalusa Heart Study). Am J Cardiol 2010; 106(6):793-7.

Saab G, Whooley MA, Schiller NB, Ix JH. Association of serum phosphorus with left ventricular mass in men and women with stable cardiovascular disease: data from the Heart and Soul Study. Am J Kidney Dis 2010; 56: 496-505.

Giachelli CM, Jono S, Shioi A et al. Vascular calcification and inorganic phosphate. Am J Kidney Dis 2001; 38(Suppl 1):S34–S37.

Giachelli CM. Vascular calcification: in vitro evidence for the role of inorganic phosphate. J Am Soc Nephrol 2003; 14:S300–4.

Gutiérrez OM, Mannstadt M, Isakova T et al. Fibroblast Growth Factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008; 359:584-92.

Gutiérrez OM, Januzzi JL, Isakova T et al. Fibroblast Growth Factor-23 and left ventricular hypertrophy in chronic kidney disease. Circulation 2009;119: 2545-52.

Canziani ME, Tomiyama C, Higa A et al. Fibroblast growth factor 23 in chronic kidney disease: bridging the gap between bone mineral metabolism and left ventricular hypertrophy. Blood Purif 2011;31:26-32.

Kanbay M, Nicoleta M, Selcoki Y et al. Fibroblast Growth Factor 23 and Fetuin A are independent predictors for the coronary artery disease extent in mild chronic kidney disease. Clin J Am Soc Nephrol 2010; 5:1780-6.

Cancela AL, Oliveira RB, Graciolli FG et al. Fibroblast Growth Factor 23 in Hemodialysis Patients: Effects of Phosphate Binder, Calcitriol and Calcium Concentration in the Dialysate. Nephron Clin Pract 2010; 117:74-82

Inaba M, Okuno S, Imanishi Y et al. Role of fibroblast growth factor-23 in peripheral vascular calcification in non-diabetic and diabetic hemodialysis patients. Osteoporos Int 2006; 17:1506–13.

Mirza MA, Larsson A, Melhus H et al. Serum intact FGF-23 associate with left ventricular mass, hypertrophy and geometry in an elderly population. Atherosclerosis 2009; 207:546-51.

Mirza MA, Larsson A, Lind L, Larsson TE. Circulating fibroblast growth factor-23 is associated with vascular dysfunction in the community. Atherosclerosis 2009; 205:385-90.

Mirza MA, Hansen T, Johansson L et al. Relationship between circulating FGF-23 and total body atherosclerosis in the community. Nephrol Dial Transplant 2009; 24:3125-31.

Parker BD, Schurgers LJ, Brandenburg VM et al. The associations of Fibroblast Growth Factor 23 and uncarboxylated Matrix Gla Protein with mortality in coronary artery disease: The Heart and Soul Study. Ann Intern Med 2010; 152:640-8.

Amann K, Ritz E, Wiest G et al. A role of parathyroid hormone for the activation of cardiac fibroblasts in uremia. J Am Soc Nephrol 1994; 4:1814-9.

Jono S, Nishizawa Y, Shioi A, Morii H. Parathyroid Hormone–Related Peptide as a local regulator of vascular calcification: its inhibitory action on in vitro calcification by bovine vascular smooth muscle cells. Arteriosclerosis, Thrombosis, and Vascular Biology 1997; 17:1135-42.

Moe SM, O'Neill KD, Duan D, Ahmed S, Chen NX, Leapman SB, Fineberg N, Kopecky K. Medial artery calcification in ESRD patients is associated with deposition of bone matrix proteins. Kidney Int. 2002;61:638-47.

Ellam T, Wilkie M, Chamberlain J, et al. Dietary phosphate modulates atherogenesis and insulin resistance in apolipoprotein knockout mice--brief report. Arterioscler Thromb Vasc Biol. 2011; 31:1988-90.

Six I, Maizel J, Barreto FC, et al. Effects of phosphate on vascular function under normal conditions and influence of the uraemic state. Cardiovasc Res. 2012; 96:130-9.

Shuto E, Taketani Y, Tanaka R, et al. Dietary phosphorus acutely impairs endothelial function. J Am Soc Nephrol. 2009; 20:1504-12.

Di Marco GS, König M, Stock C, et al.. High phosphate directly affects endothelial function by downregulating annexin II. Kidney Int. 2013; 83:213-22.

Di Marco GS, Hausberg M, Hillebrand U, et al. Increased inorganic phosphate induces human endothelial cell apoptosis in vitro. Am J Physiol Renal Physiol. 2008; 294:F1381-7.

Neves KR, Graciolli FG, dos Reis LM, Pasqualucci CA, Moysés RM, Jorgetti V. Adverse effects of hyperphosphatemia on myocardial hypertrophy, renal function, and bone in rats with renal failure. Kidney Int. 2004; 66:2237-44.

Custódio MR, Koike MK, Neves KR, et al. dos Reis LM, Graciolli FG, Neves CL, Batista DG, Magalhães AO, Hawlitschek P. Parathyroid hormone and phosphorus overload in uremia: impact on cardiovascular system. Nephrol Dial Transplant. 2012; 27:1437-45.

Phan O, Ivanovski O, Nguyen-Khoa T, et al. Sevelamer prevents uremia-enhanced atherosclerosis progression in apolipoprotein E-deficient mice. Circulation. 2005; 112:2875-82.

Phan O, Ivanovski O, Nikolov IG, al. Effect of oral calcium carbonate on aortic calcification in apolipoprotein E-deficient (apoE-/-) mice with chronic renal failure. Nephrol Dial Transplant. 2008;23:82-90.

Mathew S, Lund RJ, Strebeck F, Tustison KS, Geurs T, Hruska KA. Reversal of the adynamic bone disorder and decreased vascular calcification in chronic kidney disease by sevelamer carbonate therapy. J Am Soc Nephrol. 2007;18:122-30.

Maizel J, Six I, Dupont S, et al. Effects of sevelamer treatment on cardiovascular abnormalities in mice with chronic renal failure. Kidney Int. 2013; 84:491-500.

Van TV, Watari E, Taketani Y, et al. Dietary phosphate restriction ameliorates endothelial dysfunction in adenine-induced kidney disease rats. J Clin Biochem Nutr. 2012;51:27-32.

Finch JL, Lee DH, Liapis H, Ritter C, Zhang S, Suarez E, Ferder L, Slatopolsky E. Phosphate restriction significantly reduces mortality in uremic rats with established vascular calcification. Kidney Int. 2013; 84:1145-53.

Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD). Kidney Int Suppl 2009; 113: S1-130.

Covic A, Rastogi A. Hyperphosphatemia in patients with ESRD: assessing the current evidence linking outcomes with treatment adherence. BMC Nephrology 2013; 14:153.

Menon MC, Ix JH. Dietary phosphorus, serum phosphorus, and cardiovascular disease. Ann N Y Acad Sci 2013. [Epub ahead of print]

Murtaugh MA, Filipowicz R, Baird BC, Wei G, Greene T, Beddhu S. Dietary phosphorus intake and mortality in moderate chronic kidney disease: NHANES III. Nephrol Dial Transplant. 2012;27:990-6.

Nephrol Dial Transplant. 2012 Mar;27(3):990-6.Isakova T, Gutiérrez OM, Chang Y et al. Phosphorus binders and survival on hemodialysis. J Am Soc Nephrol 2009; 20: 388-96.

Lopes AA, Tong L, Thumma J et al. Phosphate binder use and mortality among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study (DOPPS): evaluation of possible confounding by nutritional status. Am J Kidney Dis 2012; 60:90–101.

Block GA, Wheeler DC, Persky MS et al. Effects of phosphate binders in moderate CKD. J Am Soc Nephrol 2012; 23(8):1407–1415.

Chertow GM, Burke SK, Raggi P, Treat to Goal Working Group. Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int 2002; 62, 1: 245-52.

Block GA, Spiegel DM, Ehrlich J et al. Effects of sevelamer and calcium on coronary artery calcification in patients new to hemodialysis. Kidney Int 2005; 68(4): 1815-24.

Block GA, Raggi P, Bellasi A et al. Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int 2007; 71:438–441.

Barreto DV, Barreto F de C, de Carvalho AB et al. Phosphate binder impact on bone remodeling and coronary calcification--results from the BRiC study. Nephron Clin Pract 2008; 110, 4: c273-83.

Suki WN, Zabaneh R, Cangiano JL et al. Effects of sevelamer and calcium-based phosphate binders on mortality in hemodialysis patients. Kidney Int 2007; 72:1130–1137.

Calvo MS, Yoangmeek PJ. Changing phosphorus content of the U.S. Diet: Potential for adverse effects on bone. J Nutr 1996; 126: 1168S-0S.




DOI: http://dx.doi.org/10.5380/rmu.v2i1.40669

DOI (PDF): http://dx.doi.org/10.5380/rmu.v2i1.40669.g24943

Apontamentos

  • Não há apontamentos.