ANÁLISE DE IMAGENS BASEADA EM OBJETOS GEOGRÁFICOS: COMPARAÇÃO DE REGRAS DE CLASSIFICAÇÃO DA COBERTURA DA TERRA

Autores/as

DOI:

https://doi.org/10.5380/raega.v56i0.84710

Palabras clave:

classificação de imagens, Sensoriamento Remoto, GEOBIA, potencial de transferência.

Resumen

Os níveis de automação do processo de classificação das imagens de satélite variam muito entre as diferentes pesquisas. Contudo, inúmeros trabalhos demonstraram que os procedimentos semiautomáticos, como a Análise de Imagens Baseada em Objetos Geográficos (GEOBIA), produzem melhores resultados. Este artigo tem como objetivo comparar os parâmetros de classificação desenvolvidos por quatro analistas distintos, que se basearam na mesma chave de interpretação, aplicados em duas cenas de Marília - SP. Visa avaliar o potencial de transferência das regras de classificação entre as diferentes áreas. Os resultados mostraram que os analistas optaram por diferentes: conjuntos de regras, atributos quantificáveis, limiares e níveis hierárquicos. No entanto, os índices kappa das classificações foram considerados muito bons. E, os conjuntos de regras produzidos por três analistas apresentaram elevada capacidade de transferência entre as cenas analisadas. Essa constatação ressalta a relevância de criar bibliotecas específicas para compartilhar os referidos procedimentos.

Biografía del autor/a

Agnes Silva de Araujo, Universidade Estadual do Paraná - campus de Campo Mourão

Possui Bacharelado e Licenciatura Plena em Geografia pela Universidade de Paulo (2013), Mestrado em Geografia Física (2015) e Doutorado em Geografia Física (2020). Tem experiência na área de Cartografia e Sensoriamento Remoto, com ênfase em Sistemas de Informações geográficas, Analise de Imagens Baseada em objetos geográficos e Modelagem dinâmica. Atualmente é docente do SENAC, ministrando as disciplinas de Análise Espacial e Geoestatística para a Pós-Graduação em Geoprocessamento e da UNESPAR, campus de Campo Mourão, ministrando disciplinas de Geoprocessamento, Cartografia Temática e Topografia e Georreferenciamento para o curso de Geografia.

Alfredo Pereira Queiroz, Universidade de São Paulo (FFLCH-USP)

Livre-Docente em Geografia - FFLCH - USP (2018), Pós doutorado no Institut des Hautes Etudes de L`Amérique Latine (IHEAL) Université Paris III Sorbonne Nouvelle (2008-09), Doutor em Engenharia pela Escola Politécnica da USP (2005), Mestre em Engenharia pela Escola Politécnica da USP (1993), Graduado em Geografia FFLCH - USP (1989), Professor de Cartografia e Análise Espacial (graduação e pós-graduação) do Departamento de Geografia - FFLCH - USP (desde 2001). Bolsista Produtividade CNPQ (2). Presidente da Comissão de Pesquisa da FFLCH-USP 2021-22. Vice-coordenador da Pós-graduação em Geografia Física (2019-2021). Vice-coordenador da CoC bacharelado do Departamento de Geografia (desde 2016). Representante da Geografia no CREA-SP (2014-2019). Editor do Boletim Paulista de Geografia (2015-2018).

Citas

ALBRECHT, F.; LANG, S.; HÖLBLING, D. Spatial accuracy assessment of object boundaries for object-based image analysis. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 37, n. 1, p. 1–6, 2010.

ANDERS, N. S.; SEIJMONSBERGEN, A. C.; BOUTEN, W. Rule set transferability for object-based feature extraction: an example for cirque mapping. Photogrammetric Engineering & Remote Sensing, v. 81, n. 6, p. 507–514, 2015.

ARAUJO, A. S.; QUEIROZ, A. P. Spatial Characterization and Mapping of Gated Communities. International Journal of Geo-Information, v. 7, n. 7, 2018.

ARDELEAN, F.; DRĂGUŢ, L.; URDEA, P.; TÖRÖK-OANCE, M. Variations in landform definition: a quantitative assessment of differences between five maps of glacial cirques in the Ţarcu Mountains. Area, v. 45, n. 3, p. 348–357, 2013.

BAATZ, M.; SCHÄPE, A. Multi resolution Segmentation: an optimum approach for high quality multi scale image segmentation. In: STROBL, J.; BLASCHKE, T.; GRIESEBNER, G. (Eds.). Angewandte Geographische Informations-Verarbeitung XII. Karlsruhe: Wichmann Verlag, 2000. p. 12–23.

BELGIU, M.; DRĂGUŢ, L.; STROBL, J. Quantitative evaluation of variations in rule-based classifications of land cover in urban neighborhoods using WorldView-2 imagery. ISPRS Journal of Photogrammetry and Remote Sensing, v. 87, n. 1, p. 205–215, 2014.

BENZ, U. C.; HOFMANN, P.;WILLHAUCK, G.; LINGENFELDER, I.; HEYNEN, M. Multiresolution, object-oriented fuzzy analysis of remote sensing data for GIS ready information. ISPRS Journal of Photogrammetry and Remote Sensing, v. 65, n. 1, p. 2–16, 2004.

BLASCHKE, T. Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, v. 65, n. 1, p. 2–16, 2010.

CHEN, G.; WENG, Q.; HAY, G. F.; HE, Y. Geographic object-based image analysis (GEOBIA): emerging trends and future opportunities. GIScience & Remote Sensing, v. 55, n. 2, p. 159–182, 2018.

CIVCO, D. L.; HURD, J. D.; WILSON, E. H.; SONG, M.; ZHANG, Z. A comparison of land use and land cover change detection methods. ASPRS-ACSM ANNUAL CONFERENCE, Washington, DC. Anais...2002.

COLARES, I. V. V.; OLIVEIRA NUNES, M. T.; SOUSA, G. M.; FERNANDES, M. C. Aplicação de GEOBIA para classificação da cobertura da terra no Parque Nacional do Itatiaia. Revista Brasileira de Geomática, v. 3, n. 1, p. 24–31, 2015.

CONGALTON, R. G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing and Environment, v. 37, n. 1, p. 35–46, 1991.

DE LEEUW, J.; JIA, H.; YANG, L.; LIU, X.; SCHMIDT, K.; SKIDMORE, A. K. Comparing accuracy assessments to infer superiority of image classification methods. International Journal of Remote Sensing, v. 27, n. 1, p. 223–232, 2006.

DRĂGUŢ, L.; CSILLIK, O.; EISANK, C.; TIEDE, D. Automated parameterisation for multi-scale image segmentation on multiple layers. ISPRS Journal of Photogrammetry and Remote Sensing, v. 88, n. 1, p. 119–127, 2014.

DURO, D. C.; FRANKLIN, S. E.; DUBÉ, M. G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sensing and Environment, v. 118, n. 1, p. 259–272, 2012.

FOODY, G. M. Thematic map comparison: evaluating the statistical significance of differences in classification accuracy. Photogrammetric Engineering & Remote Sensing, v. 70, n. 5, p. 627–634, 2004.

FOODY, G. M. Explaining the unsuitability of the kappa coefficient in the assessment and comparison of the accuracy of thematic maps obtained by image classification. Remote Sensing of Environment, v. 239, n. 1, p. 11–31, 2020.

FOTHERINGHAM A.S.; ROGERSON P. The SAGE Handbook of Spatial Analysis. SAGE Publications Ltd All, London. 2009.

FRANCISCO, C. N.; ALMEIDA, C. M. Interpretação de imagens orbitais por meio de sistema especialista para o mapeamento de cobertura da terra em região montanhosa. Sociedade e Natureza, v. 24, n. 2, p. 283–301, 2012.

GARDIN, S.; VAN LAERE, S. M.; VAN COLLIE, F. M. B.; ANSEEL, F.; DUYCK, W.; DE WULF, R. R.; VERBEKE, L. P. C. Remote sensing meets psychology: a concept for operator performance assessment. Remote Sensing Letters, v. 2, n. 3, p.251-257, 2011.

HAGGETT, P.; CHORLEY, R.J. Modelos, paradigmas e a Nova Geografia. In: CHORLEY, R.J.; HAGGETT, P. Rio de Janeiro: Livros Técnicos e Científicos Editora e EDUSP, p. 1-22, 1974.

HAMEDIANFAR, A.; SHAFRI, H. Z. M. Detailed intra-urban mapping through transferable OBIA rule sets using WorldView-2 very-high-resolution satellite images. International Journal of Remote Sensing, v. 36, n. 1, p. 3380–3396, 2015.

HAPP, P. N.; FEITOSA, R. Q.; STREET, A. Assessment of optimization methods for automatic tuning of segmentation parameters. Proceedings of the 4th GEOBIA. Anais...Rio de Janeiro: 2012

HARVEY, D. Modelos da evolução dos padrões espaciais na geografia. In: CHORLEY, R.J.; HAGGETT, P. Rio de Janeiro: Livros Técnicos e Científicos Editora e EDUSP, p. 101-155, 1974

HAY, G. J.; CASTILLA, G. Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline. In: BLASCHKE, T.; LANG, S.; HAY, G. J. (Eds.). Object-based image analysis. Berlin: Springer-Heidelberg, 2008. p. 75–89.

HEROLD, M.; MAYAUX, P.; WOODCOCK, C. E.; BACCINI, A.; SCHMULLIUS, C. Some challenges in global land cover mapping: an assessment of agreement and accuracy in existing 1 km datasets. Remote Sensing and Environment, v. 112, n. 5, p. 2538–2556, 2008.

HODGSON, M.; JENSEN, J. R.; TULLIS, J. A.; RIORDAN, K.; ARCHER, C. M. Synergistic use of lidar and color aerial photography for mapping urban parcel imperviousness. Photogrametric Engineering and Remote Sensing, v. 69, n. 9, p. 973–980, 2003.

JOHNSON, B. A.; BRAGAIS, M.; ENDO, I.; MAGCALE-MACANDOG, D. B.; MACANDOG, P. B. M. Image segmentation parameter optimization considering within-and between-segment heterogeneity at multiple scale levels: Test case for mapping residential areas using landsat imagery. ISPRS Journal of Photogrammetry and Remote Sensing, v. 4, n. 4, p. 2292–2305, 2015.

KERR, G. H. G.; FISCHER, C.; REULKE, R. Reliability assessment for remote sensing data: Beyond Cohen’s kappa. IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS). Anais...2015

KIM, M. WARNER, T. A.; MADDEN, M.; ATKINSON, D. S. Multi-scale GEOBIA with very high spatial resolution digital aerial imagery: scale, texture and image objects. International Journal of Remote Sensing, v. 32, n. 10, p. 2825–2850, 2011.

KOHLI, D.; WARWADEKAR, P.; KERLE, N.; SLIUZAS, R.; STEIN, A. Transferability of object-oriented image analysis methods for slum identification. Remote Sensing, v. 5, n. 9, p. 4209–4228, 2013.

LANDIS, R. J.; KOCH, G. G. The Masurement of Observed Agreement for Categorial Data. Biometrics, v. 33, n. 1, p. 159–174, 1977.

LIU, X.; HE, J.; YAO, Y.; ZHANG, J.; LIANG, H.; WANG, H.; HONG, Y. Classifying urban land use by integrating remote sensing and social media data. International Journal Geographical Information Science, v. 31, n. 8, p. 1675–1696, 2017.

MAHDAVI, S.; SALEHI. B.; GRANGER, J.; AMANI, M.; BRISCO, B.; HUANG, W. Remote sensing for wetland classification: A comprehensive review. GIScience & Remote Sensing, v. 55, n. 5, p. 623-658, 2018.

MAXWELL, A. E. et al. Large-Area, High Spatial Resolution Land Cover Mapping Using Random Forests, GEOBIA, and NAIP Orthophotography: Findings and Recommendations. Remote Sensing, v. 11, n. 12, p. 1409–1429, 2019.

MYINT, S. W.; GOBER, P.; BRAZEL, A.; GROSSMAN-CLARKE, S.; WENG, Q. Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment, v. 115, n. 5, p. 1145–1161, 2011.

NOVACK, T.; KUX, H.; FEITOSA, R. Q.; COSTA, G. A. A knowledge-based, transferable approach for block-based urban land-use classification. International Journal of Remote Sensing, v. 35, n. 13, p. 4739–4757, 2014.

PINHO, C. M. D.; FONSECA, L. M. G.; KORTING, T. S.; ALMEIDA, C. M. Land-cover classification of an intra-urban environment using high-resolution images and object-based image analysis. International Journal of Remote Sensing, v. 33, n. 19, p. 5973–5995, 2012.

PLATT, R. V.; RAPOZA, L. An evaluation of an object-oriented paradigm for land use/land cover classification. The Professional Geographer, v. 60, n. 1, p. 87–100, 2008.

PONTIUS JR, R. G.; MILLONES, M. Death to Kappa: birth of quantity disagreement and allocation disagreement for accuracy assessment. International Journal of Remote Sensing, v. 32, n. 15, p. 4407–4429, 2011.

PRADO, D. P.; RUIZ, L. A. Comparative of Machine Learning Algorithms and Datasets to Classify Natural Coverage in the Cajas National Park (Ecuador) Based on GEOBIA Approach. MULTIDISCIPLINARY DIGITAL PUBLISHING INSTITUTE PROCEEDINGS. Anais...2019

ROUSE JR, J. W. et al. Monitoring vegetation systems in the great plains with ERTS. Third ERTS symposium, NASA SP-351. Anais...Washington, D. C.: 1973

SCEPAN, J. Thematic validation of high-resolution global land-cover data sets. Photogrametric Engineering and Remote Sensing, v. 656, n. 1, p. 1051–1060, 1999.

TANG, H.; WU, W.; YANG, P.; PENG, Y.; VERBURGET, P.H. Recent progresses of land use and land cover change (LUCC) models. Acta Geographica Sinica – Chinese Edition, 2009. v. 64, p. 456-468

WHITESIDE, T.; AHMAD, W. A comparison of object-oriented and pixel-based classification methods for mapping land cover in northern Australia. SPATIAL INTELLIGENCE, INNOVATION AND PRAXIS: The national biennial conference of the Spatial Sciences Institute. Anais...2005

ZHA, Y.; GAO, J.; NI, S. Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. International Journal of Remote Sensing, v. 24, n. 3, p. 583–594, 2003.

ZHANG, X.; FENG, X.; XIAO, P.; HE, G.; ZHU, L. Segmentation quality evaluation using region based precision and recall measures for remote sensing images. ISPRS Journal of Photogrammetry and Remote Sensing, v. 102, n. 1, p. 73–84, 2015.

ZHOU, W.; SCHWARZ, K.; CADENASSO, M. Mapping urban landscape heterogeneity: agreement between visual interpretation and digital classification approaches. Landscape and Ecology, v. 25, n. 1, p. 53–67, 2010.

Publicado

2023-04-22

Cómo citar

de Araujo, A. S., & Queiroz, A. P. (2023). ANÁLISE DE IMAGENS BASEADA EM OBJETOS GEOGRÁFICOS: COMPARAÇÃO DE REGRAS DE CLASSIFICAÇÃO DA COBERTURA DA TERRA. RAEGA - O Espaço Geográfico Em Análise, 56, 3–23. https://doi.org/10.5380/raega.v56i0.84710

Número

Sección

Artigos