RELATIONSHIP BETWEEN NON-PHOTOSYNTHETIC VEGETATION, INTENSITY OF FIRE AND FIRE RADIATIVE POWER IN THE AMAZON

Authors

DOI:

https://doi.org/10.5380/raega.v51i0.73066

Keywords:

Agriculture, Burned Areas, Linear Spectral Unmixing, Mato Grosso, Remote Sensing.

Abstract

Carbon emissions from fires can invalidate efforts to reduce carbon emissions from deforestation This paper aims to present the possible relationship between non-photosynthetic vegetation (NPV), the intensity of burning (dNBR) and fire radiative power (FRP) in southeastern Legal Amazon. For this purpose, two OLI/Landsat 8 images, corresponding to scene 227-068 of 2014, were used to map burn scars in the area. Mapping of burn scars in 2014 resulted in 442.2 km² (2.2% of overall area). It was not observed burned areas in forests fragments located far from agricultural areas, which means that forest fires recurrence occurred on the edges of agricultural areas. The correspondence between NPV with dNBR and FRP was low. The non-use of fire as a management practice in agricultural areas and the use of no-till system justified the weak correlation between the NPV, dNBR and FRP.

References

ADLER-GOLDEN, S. M.; MATTHEW, M. W.; BERNSTEIN, L. S.; LEVINE, R. Y.; BERK, A.; RICHTSMEIER, S. C.; ACHARYA, P. K.; ANDERSON, G. P.; FELDE, G.; GARDNER, J.; HIKE, M.; JEONG, L. S.; PUKALL, B.; MELLO, J.; RATKOWSKI, A.; BURKE, H. H. Atmospheric correction for shortwave spectral imagery based on MODTRAN4. SPIE Proc. Imaging Spectrometry, 3753:61-69, 1999.

ALENCAR, A.; NEPSTAD, D.C.; VERA DIAZ, M.C.V. Forest understory fire in the Brazilian Amazon in ENSO and non-ENSO Years: area burned and committed carbon emissions. Earth Interactions, 10:1-17, 2006.

ALLEN, J.L.; SORBEL, B. Assessing the differenced Normalized Burn Ratio’s ability to map burn severity in the boreal forest and tundra ecosystems of Alaska’s national parks. International Journal of Wildland Fire, 17:4, 2008.

ANDERSON, L. O.; ARAGÃO, L. E. O. C.; LIMA, A.; SHIMABUKURO, Y. E. Detecção de cicatrizes de áreas queimadas baseada no modelo linear de mistura espectral e imagens índice de vegetação utilizando dados multitemporais do sensor MODIS/TERRA no estado do Mato Grosso, Amazônia brasileira. Acta Amazonica, v. 35, n. 4, p. 445–456, 2005.

ARAGÃO, L. E. O. C.; MALHI, Y.; BARBIER, N.; LIMA, A.; SHIMABUKUR, O. Y.; ANDERSON, L.; SAATCHI, S. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, v. 363, n. 1498, p. 1779–85, 2008.

ARAGÃO, L. E. O. C.; MALHI, Y.; ROMAN-CUESTA, R. M.; SAATCHI, S.; ANDERSON, L. O.; SHIMABUKURO, Y. E. Spatial patterns and fire response of recent Amazonian droughts. Geophysical Research Letters, v. 34, n. 7, p. L07701, 2007.

ARAGÃO, L. E. O. C.; SHIMABUKURO, Y. E. The incidence of fire in Amazonian forests with implications for REDD. Science, 328(5983), 1275-1278, 2010.

ASNER, G. P. Automated mapping of tropical deforestation and forest degradation: CLASlite. Journal of Applied Remote Sensing, v. 3, n. 1, p. 033543, 2009.

ASNER, G. P. Biophysical and Biochemical Sources of Variability in Canopy Reflectance. Remote Sensing of Environment, v. 64, n. 3, p. 234–253, 1998.

ASNER, G. P. CLASlite Forest Monitoring Technology. 2015. Available in: <http://claslite.carnegiescience.edu/en/support/links.attachment/90/download>. Access in: 23 jun 2015.

BRONDIZIO, E. S.; MORAN, E. F. Human dimensions of climate change: the vulnerability of small farmers in the Amazon. Philosophical Transactions of the Royal Society B-Biological Sciences, 363(1498), 1803-1809, 2008.

COCHRANE, M. A.; ALENCAR, A.; SCHULZE, M.; SOUZA, C.; NEPSTAD, D.; LEFEBVRE, P.; DAVIDSON, E. Positive feedbacks in the fire dynamics of closed canopy tropical forests. Science, 284: 1832-1835, 1999.

EVA, H.; LAMBIN, E. F. Fires and land-cover change in the tropics: a remote sensing analysis at the landscape scale. Journal of Biogeography, 27(3), 765–776, 2000.

FEARNSIDE, P. M., BARBOSA, R. I., GRAÇA, P. M. L. A. Burning of secondary forest in Amazonia: Biomass, burning efficiency and charcoal formation during land preparation for agriculture in Apiaú, Roraima, Brazil. Forest Ecology and Management, v.242, p.678 – 687, 2007.

IBGE. Mapa de biomas do Brasil: escala 1:500.000. 2004. Available in: <ftp://ftp.ibge.gov.br/Cartas_e_Mapas/Mapas_Murais/>. Access in: 21 jun 2015.

KEY, C.H.; BENSON, N. C. Measuring and remote sensing of burn severity: the CBI and NBR. In Proceedings Joint Fire Science Conference and Workshop, p. 282. 1999.

KOUTSIAS, N.; KARTERIS, M. Logistic regression modelling of multitemporal Thematic Mapper data for burned area mapping. International Journal of Remote Sensing, v. 19, p. 3499–3514, 1998.

LIMA, A.; SILVA, T.S.F.; ARAGÃO, L.E.O.; FREITA, R.M.; ADAMI, M.; FORMAGGIO, A.R.; SHIMABUKURO, Y.E. Land use and land cover changes determine the spatial relationship between fire and deforestation in the Brazilian Amazon. Applied Geography, 34, 239–246, 2012.

MATRICARDI, E. A. T.; SKOLE D. L., PEDLOWSKI, M. A.; CHOMENTOWSKI, W., FERNANDES, L. C. Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sensing of Environment, 114, p. 1117-1129, 2010.

MORTON, D. C.; DEFRIES, R. S.; SHIMABUKURO, Y. E.; ANDERSON, L. O.; ARAI, E.; ESPIRITO SANTO, F. D.; FREITA, R.; MORISSETTE, J. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States of America, 103(39), 14637-14641, 2006.

PEREIRA, G.; SHIMABUKURO, Y. E.; MORAES, E. C.; FREITAS, S. R.; CARDOZO, F. S.; LONGO, K. M. Monitoring the transport of biomass burning emission in South America. Atmospheric Pollution Research, v. 2, p. 247-254, 2011.

PRODES. Projeto PRODES: monitoramento da floresta Amazônica brasileira por satélite. 2015. Available in: <http://www.obt.inpe.br/prodes/index.php>. Access in: 10 jun 2015.

SHIMABUKURO, Y.E.; SMITH, J.A. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data. IEEE Transactions on Geoscience and Remote Sensing, v. 29, n 1, p. 16-20, 1991.

SMITH, L. T.; ARAGÃO, L. E. O. C.; SABEL, C. E.; NAKAYA, T. Drought impacts on children’s respiratory health in the Brazilian Amazon. Scientific reports, v. 4, p. 3726.

SORRENSEN, C. L. Linking smallholder land use and fire activity: examining biomass burning in the Brazilian Lower Amazon. Forest Ecology and Management, 128(1e2), 11-25, 2000.

SORRENSEN, C. L. Potential hazards of land policy: conservation, rural development and fire use in the Brazilian Amazon. Land Use Policy, v. 26, n. 3 pp. 782-791, 2009.

VERAVERBEKE, S.; LHERMITTE, S.; VERSTRAETEN, W.W.; GOOSSENS, R. Illumination effects on the differenced Normalized Burn Ratio’s optimality for assessing fire severity. Int. J. Appl. Earth Obs. Geoinf., 12, 60-70, 2010.

WHELAN, R. J. The ecology of fire. Cambridge University Press. 1995.

ZARIN, D.J.; DAVIDSON, E.A.; BRONDIZIO, E.; VIEIRA, I.C.G.; SÁ, T.: FELDPAUSCH, T.; SCHUUR, E.A.G.; MESQUITA, R.; MORAN, E.; DELAMONICA, P.; DUCEY, M.J.; HURTT, G.C.; SALIMON, C.; DENICH, M. Legacy of fire slows carbon accumulation in Amazonian forest regrowth. Frontiers in Ecology and the Environment, 3: 365-369, 2005.

Downloads

Published

2021-09-02

How to Cite

Capanema, V., de Souza, G. M., & Leite Silva Junior, C. H. (2021). RELATIONSHIP BETWEEN NON-PHOTOSYNTHETIC VEGETATION, INTENSITY OF FIRE AND FIRE RADIATIVE POWER IN THE AMAZON. RA’E GA Journal - The Geographic Space in Analysis, 52, 3–17. https://doi.org/10.5380/raega.v51i0.73066