Open Journal Systems

THEORETICAL AND METHODOLOGICAL ASPECTS OF CLOUD WATER INTERCEPTION

Daniel Ribeiro Lange, Irani dos Santos

Resumo


Cloud water interception (CWI) occurs when water contained in fog and wind-driven rain collides with vegetation, merges into larger droplets, and precipitates to the ground. CWI has an important function as an additional source of water and its relationships with tropical cloud forests have often been emphasized. Despite its importance, there is no standardization of measurement methods, nor of the terms that designate the process in Portuguese. Therefore, a systematic analysis of research on CWI is necessary. To this end, the present study carried out a review of the theoretical and methodological aspects of CWI through description and analysis of terminology; history and chronology of studies on the topic; survey of the environmental conditions necessary for the CWI process to occur; analysis of methodological aspects relating to the measurement of CWI; and synthesis and discussion of magnitudes described in scientific literature. As a result, of the 31 publications reviewed, 14 different words were found, the most common being “Cloud Water Interception” (19.4%) and “Fog Drip” (16.1%). In general, CWI is more common in places such as continental edges and islands that are constantly subject to sea breezes. In most cases, the below-canopy measurement approach can be considered more accurate than those obtained by fog collectors. CWI is on average responsible for 42% of effective precipitation (n:41). The values listed show a large variation, between 0.5% and 462%, probably due to the different environmental characteristics of the sampled locations as well as variations in sample sizes.


Palavras-chave


Hydrological monitoring, Tropical Cloud Forests, Stemflow.

Texto completo:

PDF (English)

Referências


ALLEN, R. G.; PEREIRA, L. S.; RAES, D.; SMITH, M. Crop Evapotranspiration. Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper, n. 56, p. 300, 1998.

APARECIDO, L. M.; TEODORO, G. S.; MOSQUERA, G.; BRUM, M.; BARROS, F. D. V.; POMPEU, P. V.; OLIVEIRA, R. S. Ecohydrological drivers of Neotropical vegetation in montane ecosystems. Ecohydrology, n. 1932, p. 1-17, 2018.

ARCOVA, F. C. S.; GALVANI, E.; RANZINI, M.; DE CICCO, V. Avaliação da precipitação oculta na serra do mar com coletores passivos de nevoeiro. Revista Brasileira de Climatologia, v. 25, 2019.

BERRONES, G.; CRESPO, P.; WILCOX, B. P.; TOBON, C.; CÉLLERI, R. Assessment of fog gauges and their effectiveness in quantifying fog in the Andean páramo. Ecohydrology, n. 2300, p. 1-17, 2021.

BITTENCOURT, R. L.; BARROS, F. V.; ELLER, C. B.; MÜLLER, C. S.; OLIVEIRA, R. S. The fog regime in a tropical montane cloud forest in Brazil and its effects on water, light and microclimate. Agricultural and Forest Meteorology, n.265, p. 359-369, 2019.

BRAUMAN, K. A.; FREYBERG, D. L.; DAILY, G, C. Forest structure influences on rainfall partitioning and cloud interception: A comparison of native forest sites in Kona, Hawai’i. Agricultural and Forest Meteorology, n. 150, p. 265-275, 2010

BRUINJNZEEL, L. A.; PROCTOR, J. Hidrology and Biogeochimestry of Tropical Clous Forest: what do you really now? In: HAMILTON, L. S.; JUVIK, J. O.; SCATENA, F. N. (Ed.). Tropical Montane Cloud Forests, Springer, 1995.

BRUIJNZEEL, L. A.; HAMILTON, L. S. Decision time for cloud forests. IHP Humid Tropics Programme Series n. 13 UNESCO, 2000.

BRUIJNZEEL, L. A. Hydrology of tropical montane cloud forests: a reassessment. Land Use and Water Resources Research, n.1, p. 1-18, 2001.

BRUIJNZEEL, L. A; BURKARD R; EUGSTER W. Fog as a hydrologic input. In: ANDERSON, M. G. (Ed.). Encyclopaedia of Hydrological Sciences, John Wiley, p. 559–582, 2005.

BRUIJNZEEL, L. A.; SCATENA, F. N.; HAMILTON, L. S. Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge University Press. n. 978, 2010.

BRUIJNZEEL, L. A.; MULLIGAN, M.; SCATENA, F. N. Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrological Processes, n. 25, p. 465–498, 2011.

BUBB, P.; MAY I.; MILES L.; SAYER J. Cloud Forest agenda. Cambridge: UNEP-WCMC; 2004.

BURGESS, S. S. O.; DAWSON, T. E. The contribution of fog to the water relations of Sequoia Sempervirens (D. Don): foliar uptake and prevention of dehydration. Plant, Cell and Environment, n. 27, p. 1023–1034, 2004.

CANNON, W. A. On the relation of redwoods and fog to the general precipitation in the redwood belt of California. Torreya, n.1, p.137-139, 1901.

CAO, G.; GIAMBELLUCA, T. W.; STEVENS, D. E.; SCHROEDER, T. A. Inversion Variability in the Hawaiian Trade Wind Regime. Journal of Climate, n. 20(7), p. 1145-1160, 2007 doi:10.1175/JCLI4033.1

CÁRDENAS, M. F.; TOBÓN, C.; BUYTAERT, W. Contribution of occult precipitation to the water balance of páramo ecosystems in the Colombian Andes. Hydrological Processes, n. 31, p. 440-449, 2017.

CAVALIER, J.; JARAMILLO, M.; SOLIS, D; DE LEÓN, D. Water balance and nutrient inputs in bulk precipitation in tropical montane cloud forest in Panama. Journal of Hydrology, n.193, p. 83–96, 1997.

CHUNG, M.; DUFOUR, A.; PLUCHE, R.; THOMPSON, S. How much does dry-season fog matter? Quantifying fog contributions to water balance in a coastal California watershed. Hydrological Processes, n. 31, p. 3948–3961, 2017.

CLARK, K. L.; NADKARNI, N. M.; SCHAEFER, D.; GHOLZ, H. L. Atmospheric Deposition and Net Retention of Ions by the Canopy in a Tropical Montane Forest, Monteverde, Costa Rica. Journal of Tropical Ecology, n. 01, v. 14, p. 27-45, 1998.

COOPER, W. S. Redwoods, rainfall and fog. Plant World n. 20 p.179-189, 1911.

EKERN, P. C. Direct Interception of Cloud Water on Lanaihale, Hawaii. Soil and water management and conservation, p. 420-421, 1964.

ELIAS, V.; TESAR, M.; BUCHETE, J. Occult precipitation: sampling, chemical analysis and process modelling in the Sumava Mts. (Czech Republic) and in the Taunus Mts. (Germany). Journal of Hydrology, n.166, p.409-420, 1995.

ELLER, C. B.; MEIRELES, L. D.; STICH, S. BURGESS, S. S.; OLIVEIRA, R. S. How Climate Shapes the Functioning of Tropical Montane Cloud Forests. Current Forestry Reports, 2020.

EUGSTER, W.; BURKARD, R.; HOLWERDA, F.; BURGESS, S. S.; OLIVEIRA, R. S. Characteristics of fog and fogwater fluxes in a Puerto Rican elfin cloud forest. Agricultural and Forest Meteorology, n. 139, p. 288–306, 2006.

FIGUEIRA, C.; SEQUEIRA, M. M.; VASCONCELOS, R.; PRADA, S. Cloud water interception in the temperate laurel forest of Madeira Island. Hydrological Sciences Journal, n. 58, p. 151-161, 2013.

FISCHER, D. T.; STILL, C. J.; EBERT, C. M.; BAGUSKAS, S. A.; PARK WILLIAMS, A. Fog drip maintains dry season ecological function in a California coastal pine forest. Ecosphere, n. 7 (6), p. 01-21, 2016.

FRUMAU, K F. A.; BURKARD, B.; SCHMID, S.; BRUIJNZEEL, L. A.; TOBÓN, C.; CALVO-ALVARADO, J. C. Fog gage performance under conditions of fog and wind-driven rain. In: BRUIJNZEEL, L. A.; SCATENA, F. N.; HAMILTON, L. S. (Ed.). Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge University Press, 2010.

GARCIA-SANTOS, G.; BRUIJNZEEL, L. A. Rainfall, fog and throughfall dynamics in a subtropical ridge top cloud forest, National Park of Garajonay (La Gomera, Canary Islands, Spain). Hydrological Processes, n. 25, p. 411–417, 2011.

GEO MOUNTAINS. Policy Brief: mountain observations: monitoring, data, and information for science, policy, and society, 2022.

GIAMBELLUCA, T. W.; DELAY, J. K.; NULLET, M. A. Interpreting canopy water balance and fog screen observations: separating cloud water from wind-blown rainfall at two contrasting forest sites in Hawai’i. In: BRUIJNZEEL, L. A.; SCATENA, F. N.; HAMILTON, L. S. (Ed.). Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge University Press, 2010.

GOLDSMITH, G. R.; MATZKE, N. J.; DAWSON, T. E. The incidence and implications of clouds for cloud forest plant water relations. Ecology Letters, n. 16, p. 307–314, 2013.

HAFKENSCHEID, R.; BRUIJNZEEL. S.; RICHARD, A. M. Estimates of fog interception by montane rain forest in the Blue Mountains of Jamaica. Conference on Fog and Fog Collection. Vancouver, Canada, p. 33-36, 1998.

HAMILTON, L. S. Mountain cloud forest research and conservation: a synopsis. Mountain Research and Development, n. 15, p. 259-266, 1995.

HAR, R. D. Fog drip in the Bull Run municipal watershed, Oregon. Water Resources Bulletin, v. 18, n.5, p. 785-789, 1982.

HERWITZ, S. R.; SLYE, R. E. Three-dimensional modeling of canopy tree interception of wind-driven rainfall. Journal of Hydrology, n.168, p. 205-226, 1995.

HOLDER, C. D. Rainfall interception and fog precipitation in a tropical montane cloud forest of Guatemala. Forest Ecology and Management, n.190, p. 373–384, 2003.

HOLWERDA, F.; BURKARD, R.; EUGSTER, W.; SCATENA, F. N.; MEESTERS, A. G. C. A.; BRUIJNZEEL, L. A. Estimating fog deposition at a Puerto Rican elfin cloud forest site: comparison of the water budget and eddy covariance mSfods. Hydrological Processes, n. 20, p. 2669–2692, 2006.

HOLWERDA, F.; BRUIJNZEEL, L. A.; MUÑOZ‐VILLERS, L. E.; EQUIHUA, M.; ASBJORNSEN, H. Rainfall and cloud water interception in mature and secondary lower montane cloud forests, central Veracruz, Mexico. Journal of Hydrology, n. 384, p. 84–96, 2010.

INGRAHAM, N. L.; MATTHEWS, R. A. The importance of fog-drip water to vegetation: Point Reyes Peninsula California. Journal of Hydrology, n.164, p. 269–285, 1995.

JARVIS, A.; MULLIGAN, M. The climate of cloud forests. Hydrological Processes, n. 25, p.327–343, 2011.

JUVIK, J. O.; DELAY, J. K.; KINNEY, K. M.; HANSEN, E. W. A 50th anniversary reassessment of the seminal ‘Lana‘i fog drip study’ in Hawai‘i. Hydrological Processes, n. 25, p. 402–410, 2011.

JUVIK, J. O.; NULLET, D. 1. Relationships between rainfall, cloud-water interception, and canopy troughfall in hawaiian montane forest. In: HAMILTON, L. S. (Ed.). Tropical Montane Cloud Forests. New York: Springer-Verlag, 1995.

KEPPELER, E. Effects of Timber Harvest on Fog Drip and Streamflow, Caspar Creek Experimental Watersheds, Mendocino County, California. USDA Forest Service Gen. Tech. Rep. PSW-GTR-194, 2007.

KITAYAMA, K. Biophysical conditions of the montane cloud forests of Mount Kinabalu, Sabah, Malaysia. In: HAMILTON, L. S. (Ed.). Tropical Montane Cloud Forests. New York: Springer-Verlag, 1995.

LANGE, D. R.; SANTOS, I. Interceptação da precipitação em plantações de Pinus taeda L. na região sul do Brasil. RA’EGA, Submetido à publicação.

LIU, W. J.; LIU, W. Y.; LI, P. J.; GAO, L.; SHEN, Y. X.; WANG, P. Y.; LI, H. M. Using stable isotopes to determine sources of fog drip in a tropical seasonal rain forest of Xishuangbanna, SW China. Agricultural and Forest Meteorology, n.143, p.80-91, 2007.

MARTINÉZ-GONZÁLES, T. M.; HOLWERDA, F. Rainfall and fog interception at the lower and upper altitudinal limits of cloud forest in Veracruz, Mexico. Hydrological Processes, n. 32, p. 3717- 3728, 2018. DOI: 10.1002/hyp.13299

MCJANNET, D. L.; WALLACE, J. S.; REDDELL, P. Precipitation Interception in Australian tropical rainforests: II. Altitudinal gradient of cloud interception, stemflow, throughfall and interception. Hydrological Processes, n. 21, p. 1703- 1718, 2007.

MULLIGAN, M. Modeling the tropics-wide extent and distribution of cloud forest and cloud forest loss, with implications for conservation priority. In: BRUIJNZEEL, L. A.; SCATENA, F. N.; HAMILTON, L. S. (Ed.). Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge University Press, 2010.

MULLIGAN, M.; JARVIS, A.; GONZALEZ, J.; BRUIJNZEEL, L. A. Using ‘biosensors’ to elucidate rates and mechanisms of cloud water interception by epiphytes, leaves, and branches in a sheltered Colombian cloud forest. In: BRUIJNZEEL, L. A.; SCATENA, F. N.; HAMILTON, L. S. (Ed.). Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge University Press, 2010.

NUÑOZ-VILLERS, L. E.; HOLWERDA, F.; GÓMEZ-CÁRDENAZ M.; EQUIHUA, M.; ASBJORNSEN, H.; BRUIJNZEEL, L. A.; TOBÓN, C. Water balances of old-growth and regenerating montane cloud forests in central Veracruz, Mexico. Journal of Hydrology, n. 462–463, p. 53–66, 2012.

OBERLANDER, G. T. Summer Fog Precipitation on the San Francisco Peninsula. Ecology, n.4, p. 851-852, 1956.

PAUL, J.; CRIADO, A. R. The art of writing literature review: What do we know and what do we need to know? International Business Review, p. 1017, 2020.

PRADA, N. S.; SILVA, M. O. Fog precipitation on the Island of Madeira (Portugal). Environmental Geology, n. 41, p. 384-389, 2001.

RITTER, A.; REGALADO, C.; ASCHAN, G. Fog water collection in a subtropical elfin laurel forest of the Garajonay National Park (Canary Islands): a combined approach using artificial fog catchers and a physically based model. Journal of Hydrometeorology, n.9 (5), p.920–935, 2008.

SAWASKE, S. R.; FREYBERG, D. L. Fog, fog drip, and streamflow in the Santa Cruz Mountains of the California Coast Range. Ecohydrology, n. 8, p. 695-713, 2015.

SCATENA, F. N.; BRUIJNZEEL, L.A. BUBB, P. In: BRUIJNZEEL, L. A.; SCATENA, F. N.; HAMILTON, L. S. (Ed.). Tropical Montane Cloud Forests: Science for Conservation and Management. Cambridge University Press, 2010.

SCHEER, M. B.; CURCIO, G. R.; RODERJAN, C. V. Funcionalidades ambientais de solos altomontanos na serra da igreja, paraná. Revista Brasileira de Ciências do Solo, v. 35, p.1113-1126, 2011.

SCHEER, M. B.; MOCOCHINSKI, A.Y.; RODERJAN, C. V. Estrutura arbórea da Floresta Ombrófila Densa Altomontana de serras do Sul do Brasil. Acta Botanica Brasilica, n. 25(4), p. 735-750, 2011.

SCHEER, M. B.; CURSIO, G. R.; RODERJAN, C. V. Carbon and Water in Upper Montane Soils and Their Influences on Vegetation in Southern Brazil. Soil Science, p. 01-12, 2013.

SCHELLEKENS, J.; BRUIJINZEEL, L. A.; WICKEL, A. J.; SCATENA, F. N.; SILVER, W. L. Interception of horizontal precipitation by elfin cloud forest in the Luquillo Mountains, Easter Puerto Rico. Conference on Fog Collection, p. 29-32, 1998.

SCHEMENAUER, R. S.; CERECEDA, P. The Role of Wind in Rainwater Catchment and Fog Collection. Water, 2009.

SCHOOL, M. A.; GIAMBELLUCA, T. W.; GINGERICH, M. A.; NULLET, M. A.; LOOPE, L. L. Cloud water in windward and leeward mountain forests: The stable isotope signature of orographic cloud water. Water resources research, n. 43, p. 1-13, 2007.

SIGMON, J. T.; GILLIAM, F. S.; PARTIN, M. E. Precipitation and throughfall chemistry for a montane hardwood forest ecosystem: potential contributions from cloud water. Canadian Journal of Forest Research, n. 19, p. 1240-1247, 1989.

STADTMÜLLER, T. Cloud forests in the humid tropics: a bibliographic review. United Nations University (UNU), Turrialba: CATIE, 1987.

STOCCO, L. Floresta nebular. Morro do Carvalho. 2023. 1 original de arte, aquarela sobre papel Fabriano 5., 29 x 40 cm.

TAKAHASHI, M.; GIAMBELLUCA; T. W.; MUDD; R. M.; DELAY, J. K.; NULLET, M. A.; ASNER, G. P. Rainfall partitioning and cloud water interception in native forest and invaded forest in Hawai‘i Volcanoes National Park. Hydrological Processes, n. 25, p. 448- 464, 2011. DOI: 10.1002/hyp.7797

TEIXEIRA, G. M.; FIGUEIREDO, P. H. A.; SALEMI, L. F.; FERRAZ, S. F.; RANZINI, M.; ARCOVA, F. C.; RIZZI, N. E. Regeneration of tropical montane cloud forests increases water yield in the Brazilian Atlantic Forest. Ecohydrology, n. 2298, p. 1-11, 2021.

ZHAN, L.; CHEN, J.; ZHANG, C.; WANG, T.; XIN, P.; LI, L. Fog interception maintains a major waterfall landscape in southwest China revealed by isotopic signatures. Water Resources Research, n. 37, p. 2-34, 2020.




DOI: http://dx.doi.org/10.5380/raega.v58i0.93530