Open Journal Systems

EFEITOS DA CORREÇÃO ATMOSFÉRICA EM IMAGENS MULTIESPECTRAIS ORBITAIS PARA ESTUDOS EM CORPOS D’ÁGUA INTERIORES

Gabriella Correa Segedi, Rejane Ennes Cicerelli, Tati Almeida, Henrique Llacer Roig, Diogo Olivetti, José Vicente Elias Bernardi, Adriana Castreghini

Resumo


Os reservatórios hídricos além de serem importantes para a produção de energia elétrica, são recursos para outras necessidades da população. Imagens de sensores orbitais são aplicadas para complementar o monitoramento desses ambientes e assim suprir a deficiência  de cobertura espacial e temporal das técnicas tradicionais. No entanto estudos envolvendo análises volumétricas de corpos d’água ainda são um grande desafio devido  ao baixo sinal proveniente do corpo d’água e a interferência de fatores externos (ou fatores ambientais). Procedimentos de correção/melhoramento das imagens são propostos com frequencia, principalmente  para a redução da interferencia atmosférica. Nesse estudo foram avaliadas as melhores técnicas de correção atmosférica disponíveis comercialmente no intuito de indicar aquela técnica que mais se aproxima da resposta espectral de sensoriamento remoto obtida em campo (referência). No decorrer do estudo foram aplicados seis algoritmos de correção atmosférica (FLAASH, Second simulation of a Satellite Signal in the Solar Spectrum (6S), L8SR, Aquatic Reflectance (USGS), ACOLITE e Sen2Cor) que, a partir das análises estatísticas de análise discriminante e covariância apontaram os aplicativos 6S para imagens Landsat e Sentinel e o Acolite para imagens Landsat como os mais acurados. Embora o 6S tenha apresentado resposta próxima dos dados de referencia, observou-se baixa variabilidade na resposta espectral. Para séries temporais, o Acolite apresentou maior capacidade de correção dos dados. O tipo de aplicação também é um fator preponderante, pois ficou evidente que o uso de series temporais indicou uma técnica de correção atmosférica diferente quando comparado com a análise das cenas de forma individual.


Palavras-chave


Corpos d´água interiores, Sensoriamento remoto, Correção Atmosférica, Landsat-8, Sentinel-2

Texto completo:

PDF

Referências


ABDELAL, Q.; ASSAF, M.; RAWABDEH, A.; ARABASI, S. Assessment of Sentinel-2 and Landsat-8 OLI for Small-Scale Inland Water Quality Modeling and Monitoring Based on Handheld Hyperspectral Ground Truthing. Journal of Sensors, v. 2022, 2022.

BARBOSA, C. C.; GOMES, L. N.; MINOTI, R. TeziniA modelling approach to simulate Chlorophyta and Cyanobacteria biomasses based on historical data of a Brazilian urban reservoir. Revista Ambiente & Água [online], v. 16, p. 2713, 2021.

BATISTA, B. D.; FONSECA, B. M. Fitoplâncton da região central do Lago Paranoá (DF): uma abordagem ecológica e sanitária. Engenharia Sanitária e Ambiental, v. 23, p. 229-241, 2018. https://doi.org/10.1590/S1413-41522018169124

BERNARDO, N. et al. Atmospheric correction issues for retrieving total suspended matter concentrations in inland waters using OLI/Landsat-8 image. Advances in Space Research, v. 59, n. 9, p. 2335-2348, 2017.

BERNSTEIN, L. S. Validation of the Quick Atmospheric Correction (QUAC) algorithm for VNIR-SWIR multi and hyperspectral imagery. SPIE Proceedings, Algorithms and Technologies for Multispectral, Hyperspectral and Ultraspectral imagery, v. 5806, p. 668-678, 2005.

BINDING, C. E.; STUMPF, R. P.; SHUCHMAN, R. A.; SAYERS, M. J. Advances in Remote Sensing of Great Lakes Algal Blooms. In: Crossman J., Weisener C. (eds) Contaminants of the Great Lakes. The Handbook of Environmental Chemistry, v. 101, 2020.

BORGES, H. D. et al. Monitoring cyanobacteria occurrence in freshwater reservoirs using semi-analytical algorithms and orbital remote sensing. Marine and Freshwater Research, v. 71, p. 569-578, 2020.

BRASIL, Conselho Nacional do Meio Ambiente. Resolução CONAMA n. 357, de 17 de março de 2005. Diário Oficial da União, v. 18, n. mar, p. 58-63, 2005.

CABALLERO, I. et al. Water quality monitoring with Sentinel-2 and Landsat-8 satellites during the 2021 volcanic eruption in La Palma (Canary Islands). Science of the Total Environment, v. 822, p. 153433, 2022.

CARVALHO, G. A. et al. Classification of Oil Slicks and Look-Alike Slicks: A Linear Discriminant Analysis of Microwave, Infrared, and Optical Satellite Measurements. Remote Sensing, v. 12, p. 2078, 2020.

COOLEY, T. et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In: IEEE international geoscience and remote sensing symposium. IEEE, 2002. p. 1414-1418.

DE KEUKELAERE, L.; STERCKX, S.; ADRIAENSEN, S.; KNAEPS, E.; REUSEN, I.; GIARDINO, C.; BRESCIANI, M.; HUNTER, P.; NEIL, C.; VAN DER ZANDE, D.; VAICIUTE, D. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: validation for coastal and inland waters. European Journal of Remote Sensing, v. 51, 2018.

DEKKER, A. G.; PETERS, W. M. The use of the Thematic Mapper for the analysis of eutrophic lakes: a case study in the Netherlands. International Journal of Remote Sensing, v. 4, p. 799-821, 1993.

DOS PASSOS, M. C. et al. Crise hídrica no Distrito Federal, Brasil: uma visão acadêmica. Research, Society and Development, v. 9, n. 11, p. e1139119518-e1139119518, 2020.

DUBE, T. et al. Testing the detection and discrimination potential of the new Landsat 8 satellite data on the challenging water hyacinth (Eichhornia crassipes) in freshwater ecosystems. Applied Geography, v. 84, p. 11-22, 2017.

GONZALEZ, L. C. et al. Use of Landsat 8 images for depth and water quality assessment of El Guajaro reservoir, Colombia. Journal of South American Earth Sciences, v. 82, p. 231-238, 2018.

HARMEL, T. et al. Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands. Remote Sensing of Environment, v. 204, p. 308-321, 2018.

KIRK, J. T. O. Light and photosynthesis in aquatic ecosystems. 3rd ed. New York: Cambridge University Press, 2011.

KRAVCHENKO, A. N.; BOLLERO, G. A.; OMONODE, R. A.; BULLOCK, D. G. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Science Society of America Journal [on line] 66. Disponível: https://doi.org/10.2136/sssaj2002.2350. Acesso: 10 set. 2020.

KRAVCHENKO, A. N. et al. Quantitative mapping of soil drainage classes using topographical data and soil electrical conductivity. Soil Science Society of America Journal, v. 66, 2002.

MACIEL, D. et al. Retrieving Total and Inorganic Suspended Sediments in Amazon Floodplain Lakes: A Multisensor Approach. Remote Sensing, v. 11, p. 1744, 2019.

MACIEL, F. P.; PEDOCCHI, F. Evaluation of ACOLITE atmospheric correction methods for Landsat-8 and Sentinel-2 in the Río de la Plata turbid coastal Waters. International Journal of Remote Sensing, v. 43, 2022.

MCLACHLAN, G. J. Discriminant Analysis and Statistical Pattern Recognition. John Wiley & Sons, 2009.

MÉLIN, F. Validation of ocean color remote sensing reflectance data: Analysis of results at European coastal sites. Remote Sensing of Environment, v. 280

MOBLEY, C.D. Estimation of the remote-sensing reflectance from above-surface measurements. Appl. Opt. 1999, 38, 7442–7455, doi:10.1364/AO.38.007442.

MÜLLER-WILM, Uwe; DEVIGNOT, O.; PESSIOT, L. S2 MPC Sen2Cor configuration and user manual. 2017.

NANNI, M. R.; DEMATTE, J. A. M. Análise discriminante dos solos por meio da resposta espectral no nível terrestre. Pesquisa Agropecuária Brasileira. V. 39, p. 995-1006, 2004.

NYAMEKYE, Clement et al. Mapping changes in artisanal and small-scale mining (asm) landscape using machine and deep learning algorithms. a proxy evaluation of the 2017 ban on asm in ghana. Environmental Challenges, v. 3, p. 100053, 2021.

OLIVETTI, D.; ROIG, H. L.; MARTINEZ, J. M.; BORGES, H.; FERREIRA, A. CASARI, R.; SALLES, L.; MALTA, E. Low-Cost Unmanned Aerial Multispectral Imagery for Siltation Monitoring in Reservoirs. Remote Sens. 2020.

OGASHAWARA, Igor et al. Performance of the Landsat 8 provisional aquatic reflectance product for inland waters. Remote Sensing, v. 12, n. 15, p. 2410, 2020.

PEREIRA-SANDOVAL, M.; RUESCAS, A.; URREGO, P.; RUIZ-VERDU, A.; DELEGIDO, J,. TENJO, C.; VICENTE, E.; SORIA, J.; MORENO, J. Evaluation of Atmospheric Correction Algorithms over Spanish Inland Waters for Sentinel-2 Multi Spectral Imagery Data. Remote Sensing. V. 11, p. 1469, 2019.

PISANTI, A. et al. Sea Water Turbidity Analysis from SENTINEL-2 Images: Atmospheric Correction and Bands Correlation. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. 48, p. 371-378, 2022.

ROGER, Jean-Claude et al. Aerosol models from the AERONET database: application to surface reflectance validation. Atmospheric Measurement Techniques, v. 15, n. 5, p. 1123-1144, 2022.

STEINMETZ, F.; DESCHAMPS, P.; RAMON, D. Atmospheric correction in presence of sun glint: application to MERIS. Optics Express, v. 19, p. 9783-9800, 2011.

VANHELLEMONT, Q. Adaptation of the Dark Spectrum Fitting Atmospheric Correction for Aquatic Applications of the Landsat and Sentinel-2 Archives. Remote Sensing of Environment. V. 225, p. 175-192, 2019.

VANHELLEMONT, Q. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre-and decametre-scale satellite imagery using autonomous hyperspectral radiometry. Optics Express. V. 28, p. 29948-29965, 2020.

VERMOTE, E.; TANRE, D.; DEUZE, J.; HERMAN, M.; MORCRETTE, J.; KOTCHENOVA, S. Second xulation of a satellite signal in the solar spectrum-vector (6SV) 6S User Guide Version 3. In Remote Sensing: Models and Methods for Image Processing; Schowengerdt, R.A., Ed.; Academic Press: Cambridge, MA, USA, 2006.

VERMOTE, E.; JUSTICE, C.; CLAVERIE, M.; FRANCH, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment. V. 4, 2016.

YUAN, Jin-guo et al. Atmospheric correction of Hyperion hyperspectral image based on FLAASH. Spectroscopy and Spectral Analysis, v. 29, n. 5, p. 1181-1185, 2009.

YANG, Haibo et al. A review of remote sensing for Water Quality Retrieval: Progress and challenges. Remote Sensing, v. 14, n. 8, p. 1770, 2022.

WANG, D. The assessment of Landsat-8 OLI atmospheric correction algorithms for inland waters. Remote Sensing, v. 11, p. 169, 2019.

WANG, Z. Atmospheric Correction Methods for GF-1 WFV-1 Data in Hazy Weather. Journal of Indian Society Remote Sensing. v. 46, p. 355-366, 2018.

WARREN, MARK A. et al. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote sensing of environment, v. 225, p. 267-289, 2019.




DOI: http://dx.doi.org/10.5380/raega.v58i0.91408