Open Journal Systems

CAN LANDSCAPE UNITS MAP HELP THE CONSERVATION OF SPIX´S MACAW?

Lucas Costa de Souza Cavalcanti, Larissa Monteiro Rafael, Lays Cristhine Santos Barbosa, Adalto Moreira Braz, Jonathan Ramos Ribeiro

Resumo


Several studies suggest that Cyanopsitta spixii occurs mainly in Tabebuia caraiba (Mart.) Bureau gallery woodlands of northern Bahia (Brazil). The recently creation of two Protected Areas (2018) is combining efforts to ensure the reintroduction and conservation of this Critically Endangered (Possibly Extinct in the Wild) macaw. Achieving species conservation requires the definition of priority conservation areas and habitat recovery and the Landscape Cartography can be a relevant tool for this purpose. This research aimed to verify if there is a correlation between Landscape Units map and the Spix’s macaw occurrence. Here the Protected Areas landscape is described in three main components: land cover, landforms and superficial geology and then overlapped to occurrence map of Spix’s macaw and its most similar syntopic parrot, Primolius maracana. Spatial correlation revealed a correspondence of 85.48% to Dry River Environment Landscape pattern and C. spixii occurrence, indicating the importance to prioritize fluvial Landscapes conservation, combined with conservation strategies that must include the local population, since this are important territories for their survival.

Palavras-chave


Protected Areas; Endangered species; Landscape Cartography; Caatinga

Referências


ALLEN, C.R.; HOLLING, C.S. Cross-scale structure and scale breaks in ecosystems and other complex systems. Ecosystems 5, p.315-318, 2002.

ASF DAAC 2015, ALOS PALSAR_Radiometric_Terrain_Corrected_high_res; Includes Material © JAXA/METI 2007. Accessed through ASF DAAC 20 august 2018. DOI: 10.5067/JBYK3J6HFSVF

BARROS, Y. M.; SOYE, Y.; MIYAKI, C. Y.; WATSON, R.; CROSTA, L.; LUGARINI, C. Plano de ação nacional para a conservação da ararinha-azul: Cyanopsitta spixii. Brasília: Chico Mendes Institute of Biodiversity Conservation, ICMBio, 2012. 140 p. http://www.icmbio.gov.br/portal/images/stories/docs-plano-de-acao/pan-ararinha-azul/pan-ararinha-azul.pdf (Accessed 19 May 2019)

BESTELMEYER, B.T.; BROWN, J.R.; HAVSTAD, K.M.; ALEXANDER, R.; CHAVEZ, G.; HERRICK, J.E. Development and use of state-and-transition models for rangelands. Journal of Range Management 56(2). p.114-126, 2003.

BirdLife International. Cyanopsitta spixii. The IUCN Red List of Threatened Species 2018: http://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22685533A130431750.en. (Accessed 22 May 2019).

BUTCHART, S. H.M.; LOWE, S.; MARTIN, R. W.; SYMES, A.; WESTRIP, J. R.S.; WHEATLEY, H.. Which bird species have gone extinct? A novel quantitative classification approach. Biological Conservation 227, p. 9–18, 2018.

CAVALCANTI, L. C. S. Geosystems of Curaçá, Bahia. Clio Arqueológica 32(3), p.61-87, 2017. DOI: 10.20891/clio.V32N3p61-87.

CAVALCANTI, L. C. S. Cartografia de paisagens: fundamentos. 2Ed. São Paulo: Oficina de textos. 2018. 91p.

CONRAD, O., BECHTEL, B., BOCK, M., DIETRICH, H., FISCHER, E., GERLITZ, L., WEHBERG, J., WICHMANN, V., AND BOEHNER, J. (2015): System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geoscientific Model Development 8, 1991-2007, doi:10.5194/gmd-8-1991-2015.

COSTA, R.C.; ARAÚJO, F.S; LIMA-VERDE, L.W. Flora and life-form spectrum in an area of deciduous thorn woodland (caatinga) in northeastern, Brazil. Journal of Arid Environments 68(2), p. 237-247, 2007.

DECREE N° 9.402, of 5 June 2018. Create the Spix’s macaw Wildlife Refuge and the Spix’s macaw Environment Protect Area. Federal Official Gazette. Brasília, DF: Civil House. http://www.planalto.gov.br/ccivil_03/_ato2015-2018/2018/decreto/D9402.htm (Accessed 20 May 2019)

EVEN, I.S. Geomorphometry and landform mapping: What is a landform? Geomorphology 137(1), p.94-106, 2012.

FICK, S.E.; HIJMANS, R.J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37(12), p. 4302 – 4315 , 2017.

GALLANT, J.C.; DOWLING, T.I. A multiresolution index of valley bottom flatness for mapping depositional areas. Water Resources Research 39(12), 1347,2003.

HOECHSTETTER, S.; WALZ, U.; DANG, L.H.; THINH, N.X. Effects of topography and surface roughness in analyses of landscape structure – A proposal to modify the existing set of landscape metrics. Landscape Online 3, p. 1–14, 2008.

IBAMA. Roteiro Técnico para a Elaboração de Planos de Manejo em Áreas Protegidas de Uso Indireto. IBAMA/ GTZ, Brasília, 1992, 47p.

IBGE. Manual técnico de Pedologia. 2ed. Rio de Janeiro:IBGE. 2007. 316p.

ICMBIO – Chico Mendes Institute of Biodiversity Conservation. Ararinhas-azuis ganham Unidades de Conservação na Bahia. Biodiversa 1 (2), p. 4 – 5, 2018.

ICMBIO – Chico Mendes Institute of Biodiversity Conservation. Bird’s Guide: Spix’s Macaw Wildlife Refuge and Environmental Protection Area. 2019. http://www4.icmbio.gov.br/portal/images/stories/comunicacao/noticias/2019/Guia_ObservacaodeAves.pdf (Accessed 22 May 2019)

ISACHENKO, G.A. Long-term conditions of Taiga landscapes of European Russia. In: DYAKO-NOV, K.N., KASIMOV, N.S., KHOROSHEV, A.V., KUSHLIN, A.V. Landscape Analysis for sustainable development: theory and applications of landscape science in Russia. Moscou: Alexplublishers, p.144-155, 2007.

ITTEN, J. The Elements of Color. New York: VNR. 1970. 98p.

JUNIPER, T.; YAMASHITA, C. The habitat and status of Spix’s Macaw Cyanopsitta spixii. Bird Conservation International 1, p. 1 – 9, 1991.

KHOROSHEV, A.V. Modern Trends in Structural Landscape Study. Izvestia Ran. Serie Geographica 3, p. 7–15. 2016. (in Russian).

LAW 9.985, of 18 July of 2000. Establishes the National System of Units of Conservation of the Nature. Federal Official Gazette. Brasília, DF: Civil House.

LOPES, E. Caminhos de Curaçá. Curaçá: Gráfica Franciscana. 2000. 260p.

MMA – Brazilian Ministry of the Environment. Parameterized Report - Conservation Unit Spix’s Macaw Wildlife Refuge, 2018a.

MMA – Brazilian Ministry of the Environment. Parameterized Report - Conservation Unit Spix’s Macaw Environment Protected Area, 2018b.

O'CALLAGHAN, J.F.; MARK, D.M. The extraction of drainage networks from digital elevation data. Computer Vision, Graphics and Image Processing 28, p.323-344, 1984.

OTTERMAN, J. Baring high-albedo soils by overgrazing: a hypothesized desertification mechanism. Science, 186(4163), p.531-533, 1974.

QGIS Development Team, 2016. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. (Accessed 22 May 2018)

RIBEIRO, V.B.; MANTOVANI, M.S.M.; LOURO, V.H.A. Aerogamaespectrometria e suas aplicações no mapeamento geológico. TERRÆ DIDATICA 10. p. 29-51, 2013.

ROUSE, J.W; HAAS, R.H.; SCHEEL, J.A.; DEERING, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In: THIRD EARTH RESOURCE TECHNOLOGY SATELLITE (ERTS) SYMPOSIUM, vol. 1, 1974, p. 48-62.

SANTOS SOBRINHO, V.R. Projeto Chorrochó-Macururé: Barro Vermelho, Folha SC.24-V-D-II. Carta Geológica. Salvador: CPRM, 2018. 1 mapa color. Escala 1:100.000. Programa Geologia, Mineração e Transformação Mineral.

SAVE BRASIL. Diagnóstico Socioeconômico e Levantamento Fundiário da Área Potencial para Reintrodução da Ararinha-azul (Cyanopsitta spixii) – Municípios de Curaçá e Juazeiro – Estado da Bahia. 2013. http://www.icmbio.gov.br/portal/images/stories/diagnostico_socioeconomico_levantamento_fundiario_consultapublica.pdf (Accessed 22 May 2019)

SILVA, J. M. C.; BARBOSA, L. C. F.; LEAL, I. R.; TABARELLI, M. The Caatinga: Understanding the Challenges. In: SILVA, JOSÉ MARIA C.; LEAL, I. R.; TABARELLI, M. (Eds.). Caatinga: The Largest Tropical Dry Forest Region in South America. Springer International Publishing, 2018. p. 3–22.

SILVA A. C; SOUZA, A. F. Aridity drives plant biogeographical sub regions in the Caatinga, the largest tropical dry forest and woodland block in South America. PLoS ONE 13(4), p. 1 – 22, 2018.

STALLINS, J.A. Geomorphology and ecology: Unifying themes for complex systems in biogeomorphology. Geomorphology 77, p. 207–216, 2006.

SWANSON, F.J.; KRATZ, T.K.; N. CAINE, N.; WOODMANSEE, R.G. Landform Effects on Ecosystem Patterns and Processes. BioScience, 38(2), pp. 92-98, 1988.

TONGWAY, D. J.; LUDWIG, J. A.; WHITFORD, W. G. Mulga log mounds: Fertile patches in the semi‐arid woodlands of eastern Australia. Australian Journal of Ecology, v. 14(3), p. 263–268, 1989.

WANG, L.; LIU, H. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. International Journal of Geographical Information Science 20(2), 193-213, 2006.

VERRALL, M. DNA, sex and the single macaw. Nature, London, 372, p. 583, 1994.

ZOMER, R.J.; TRABUCCO, A.; BOSSIO, D.A.; VAN STRAATEN, O.; VERCHOT, L. V. Climate change mitigation: a spatial analysis of global land suitability for clean development mechanism afforestation and reforestation. Agric. Ecosystems and Environment 126, p. 67 – 80, 2008.




DOI: http://dx.doi.org/10.5380/raega.v49i0.67188