LINEAR SPECTRAL MIXING MODEL APPLIED IN IMAGES FROM PROBA-V SENSOR: A SPATIAL MULTIRESOLUTION APPROACH
Resumo
The complexity of pixel composition of orbital images has been commonly referred to the spectral mixture problem. The acquisition of endmembers (pure pixels) direct from image under study is one of the most commonly employed approaches. However, it becomes limited in low or moderate spatial resolutions due to the lower probability of finding those pixels. In this way, this work proposes the combined use of images with different spatial resolutions to estimate the spectral responses of the endmembers in low spatial resolution image, from the obtained proportions derived from the spatial higher-resolution images. The proposed methodology was applied to products provided by PROBA-V satellite with spatial resolution of 100 m and 1 km in the Pantanal region of Mato Grosso state. Initially, the fraction images (proportions) were generated from the 100 m dataset using the endmembers selected directly in the image, considering the higher probability of finding pure pixels in such images. Following the spectral responses of the endmembers in 1 km were estimated by multiple linear regression, using the proportions of the endmembers in the pixels derived from 100 m images. For the evaluation, the endmembers fraction images were compared and field data was used. These analyses indicated that the spectral responses estimated allowed to improve the results with regard to error, to variability, and to the identification of endmembers proportions, considering that inadequate choice of pixels considered as pure in low spatial resolution images can affect the quality of the fraction images for operational use.
Palavras-chave
Referências
Adami, M.; Bernardes, S.; Arai, E.; Freitas, R. M.; Shimabukuro, Y. E.; Espírito-Santo, F. D. B.; Rudorff, B. F. T.; Anderson, L. O. Seasonality of vegetation types of South America depicted by moderate resolution imaging spectroradiometer (MODIS) time series. International Journal of Applied Earth Observation and Geoinformation, v. 69, n. February, p. 148–163, 2018.
Adámoli, J. O Pantanal e suas relações fito geográficas com os Cerrados. Discussão sobre o conceito de "Complexo do Pantanal". In: Anais... CONGRESSO NACIONAL DE BOTÂNICA, 32, 1981, Teresina: Sociedade de Botânica do Brasil, 1982, p.109-119.
de Alcantara, E.H., Stech, J.L., de Moraes Novo, E.M.L., Shimabukuro, Y.E; Barbosa, C.C.F. Turbidity in the Amazon floodplain assessed through a spatial regression model applied to fraction images derived from MODIS/Terra. IEEE Transactions on Geoscience and Remote Sensing, v. 46, n. 10, pp.2895-2905, 2008.
Asner, G. P. Cloud cover in landsat observations of the Brazilian Amazon. International Journal of Remote Sensing, v. 22, n. 18, p. 3855–3862, 2001.
Baret, F.; Weiss, M.; Lacaze, R.; Camacho, F.; Makhmara, H.; Pacholcyzk, P.; Smets, B. Geov1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. part1: principles of development and production. Remote Sensing of Environment, v. 137, p. 299–309, 2013.
Caten, A. T.; Benvegnu, D. J. C.; Robaina, A. D. Qualidade em levantamentos com GPS através da modelagem da acurácia e da precisão. Revista Brasileira de Agrociência, ISSN 0104-8996, v. 13, n. 2, 243-248, 2007.
CPTEC – Centro de Previsão de Tempo e Estudos Climáticos. Monitoramento Climático Mensal e Sazonal das Chuvas no Brasil na Página CPTEC/INPE, 2014. Disponível em: http://clima1.cptec.inpe.br/evolucao/pt.
De Freitas, R. M.; Haertel, V.; Shimabukuro, Y. E. Modelo linear de mistura espectral em imagem de moderada resolução espacial. Boletim de Ciências Geodésicas, v. 14, n. 1, p. 55–71, 2008.
EMPAER – Empresa Mato-Grossense de pesquisa, assitencia e extensão rural. "Calendário Agrícola", 2018. Disponível em:httphttp://www.empaer.mt.gov.br/documents/8024815/1016 0349/Calend%C3%A1rio+Agr%C3%ADcola+2018/7b605d93-2fc3-1f13-d62e4bbe8d75e0aa.
Galvão, L. S.; Pereira Filho, W.; Abdon, M. M.; Novo, E. M. M. L.; Silva, J. S. V.; Ponzoni, F. J. Spectral reflectance characterization of shallow lakes from the brazilian pantanal wetlands with field and airborne hyperspectral data. International Journal of Remote Sensing, v. 24, n. 21, p. 4093–4112, 2003.
García-Haro, F.J., Sommer, S. and Kemper, T. Variable multiple endmember spectral mixture analysis (VMESMA): a high-performance computing and environment analysis tool. International Journal of Remote Sensing. v. 26, n. 10, 2135-2162, 2005.
Goltz, E.; Brandão, D.; Tomás, L.; Mantelli, L. R.; Adami, M.; Shimabukuro, Y. E.; Formaggio, A. R. Utilização de índices espectrais de vegetação do sensor MODIS na determinação de áreas suscetíveis a alagamento no Pantanal Sul Matogrossense. Revista Brasileira de Cartografia. v. 59, n. 1, 80-94, 2007.
Harris, M. B.; Tomas, W.; Mourão, G.; Da Silva, C. J.; Guimarães, E.; Sonoda, F.; Fachim, E. Safeguarding the pantanal wetlands: threats and conservation initiatives. Conservation Biology, v. 19, n. 3, p. 714–720, 2005.
Hilker, T., Wulder, M.A., Coops, N.C., Linke, J., McDermid, G., Masek, J.G., Gao, F.; White, J.C. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment, v. 113, n. 8, pp. 1613-1627, 2009.
Keshava, N. and J. F. Mustard. 2002. Spectral Unmixing. IEEE Signal Processing Magazine, 19 (1): 44–57. doi:10.1109/79.974727.44-57.
Li, W.; Baret, F.; Weiss, M.; Buis, S.; Lacaze, R.; Demarez, V.; Dejoux, J. Francois; Battude, M.; Camacho, F. Combining hectometric and decametric satellite observations to provide near real time decametric fapar product. Remote Sensing of Environment, v. 200, p. 250–262, 2017.
Meyer, T.; Okin, G. S. Evaluation of spectral unmixing techniques using MODIS in a structurally complex savanna environment for retrieval of green vegetation, nonphotosynthetic vegetation, and soil fractional cover. Remote Sensing of Environment, v. 161, p. 122–130, 2015.
Padovani, C. R.; Vettorazzi, C. A.; Shimabukuro, Y. E.; Adami, M.; Freitas, R. M. De. Estudo das inundações do pantanal a partir de imagens modis. In: Anais...ANAIS XIV SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, XIV, 2009, Natal: INPE, 2009, p. 4805–4812.
Ravaglia, A. G.; Cristini, L.; Silva, F.; Santos, S. A.; Shimabukuro, Y. E.; Pellegrin, L. A.; Soriano, B. M.; Aguiar, G. Uso de um modelo linear de mistura espectral e índice de vegetação na avaliação de pastagens em degradação no pantanal. Anais...V SIMPOSIO SOBRE RECURSOS NATURAIS E SOCIOECONOMICOS DO PANTANAL, 5º, 2010, Corumbá: EMBRAPA Pantanal, p. 1–5, 2010.
Richardson, A. J.; Wiegand, C. L.; Gausman, H. W.; Cuellar, J. A.; Gerbermann, A. H. Plant, soil, and shadow reflectance components of row crops. Photogrammetric Engineering Remote Sensing, v. 41, n. 11, p. 1401–1407, 1975.
Shimabukuro, Y.E., Arai, E., Duarte, V., Jorge, A., Santos, E.G.D., Gasparini, K.A.C. and Dutra, A.C. Monitoring deforestation and forest degradation using multi-temporal fraction images derived from Landsat sensor data in the Brazilian Amazon. International Journal of Remote Sensing, pp.1-22, 2019.
Shimabukuro, Y.E; Ponzoni, F.J. Mistura espectral: modelo linear e aplicações. São Paulo: Oficina de Textos, ISBN 978-85-7975-270-4, 2017.
Shimabukuro, Y.E., R. Beuchle, R. Grecchi and Achard, F. Assessment of forest degradation in Brazilian Amazon due to selective logging and fires using time series of fraction images derived from Landsat ETM+ images”. Remote Sensing Letters, 5 (9), 773–782, 2014.
Shimabukuro, Y. E.; Novo, E. M.; Ponzoni, F. J. Índice de vegetação e modelo linear de mistura espectral no monitoramento da região do pantanal. Pesquisa Agropecuaria Brasileira, v. 33, n. SUPPL. 2, p. 1729–1737, 1998.
Shimabukuro, Y. E.; Smith, J. A. Fraction images derived from Landsat TM and MSS data for monitoring reforested areas. Canadian Journal of Remote Sensing, v. 21, n. 1, p. 67–74, 1995.
Shimabukuro, Y. E.; Smith, J. A. The least-squares mixing models to generate fraction images derived from remote sensing multispectral data. IEEE Transactions on Geoscience and Remote Sensing, v. 29, n. 1, p. 16–20, 1991.
Silio-Calzada, A.; Barquín, J.; Huszar, V. L. M.; Mazzeo, N.; Méndez, F.; Álvarez-Martínez, J. M. Long-term dynamics of a floodplain shallow lake in the Pantanal wetland: is it all about climate?. Science of the Total Environment, v. 605–606, p. 527–540, 2017.
Silva, J. D. S. V. Da; Abdon, M. D. M. Delimitaçao do pantanal brasileiro e suas sub-regiões. Pesquisa Agropecuária Brasileira, v. 33, n. Especial, p. 1703–1711, 1998.
Wolters, E.; Dierckx, W.; Iordache, M.-D.; Swinnen, E. PROBA-v products user manual v3.01. Image (rochester, n.y.), n. C, p. 1–110, 2018.
Wulder, M.A., White, J.C., Goward, S.N., Masek, J.G., Irons, J.R., Herold, M., Cohen, W.B., Loveland, T.R.; Woodcock, C.E. Landsat continuity: Issues and opportunities for land cover monitoring. Remote Sensing of Environment, v. 112, n. 3, pp. 955-969, 2008.
Zhang, Y., Li, X., Ling, F., Atkinson, P.M., Ge, Y., Shi, L.; Du, Y. Updating Landsat-based forest cover maps with MODIS images using multiscale spectral-spatial-temporal superresolution mapping. International Journal of Applied Earth Observation and Geoinformation, v. 63, pp. 129-142, 2017.
Zhu, Z.; Woodcock, C. E. Automated cloud, cloud shadow, and snow detection in multitemporal landsat data: an algorithm designed specifically for monitoring land cover change. Remote Sensing of Environment, v. 152, p. 217–234, 2014.
DOI: http://dx.doi.org/10.5380/raega.v46i3.67098