Open Journal Systems


Alan Sciamarelli, Mariele Ramona Torgeski


During the Quaternary, climatic variations caused changes in the size of vegetation formations in the Pantanal, promoting the expansion of seasonal forests at the beginning of the Holocene. Climatic conditions change the patterns of vegetation diversity on continental scales. Mauritia flexuosa L. f., The "Buriti", is a palm tree that explores humid environments with acid soils. While, Tabebuia aurea (Silva Manso) Benth. &Hook.f. ex S.Moore is a species of monodominant occurrence in the Pantanal in extensive areas locally denominated as "paratudal". Data sets of past eras have contributed to the study of plant species biogeography. The models of the potential distribution of these species were generated from the algorithm of the Maxent program with climatic data set of the Last Glacial Maximum (ca 22,000 years AP), Holocene Medium (ca. 6,000 years AP) and present time in two different versions. Potential distribution models with climatic packets from the present in the newer version presented areas of environmental suitability greater than in the older version. In the Holocene Middle and Late Glacial Maximum periods, the areas of environmental suitability were higher than in the newer present version. Many studies on climatic variations on the South American continent confirm the suggestions of the proposed models. The areas of environmental suitability of the species treated in the present are smaller in comparison with Last Glacial Maximum and Average Holocene. The species presented a potential distribution according to the biogeographic history of South America.


Mauritia flexuosa;Tabebuia aurea; species distribution; Mid-Holocene and Last Glacial Maximum.


ARRUDA, D. M.; SCHAEFER, C. E. G. R.; FONSECA, R. S.; SOLAR, R. R. C.; FERNANDES-FILHO, E. I. Vegetation cover of Brazil in the last 21 ka: New insights into the Amazonian refugia and Pleistocenic arc hypotheses. Global Ecology and Biogeogrraphy, v. 27, n. 1, p. 47-56, 2018.

BISSA, W. M.; de WOLINSK MIKLÓS, A. A.; MEDEANIC, S.; MARTINS CATHARINO, E. L. Palaeoclimatic and Palaeoenvironmental Changes in the Serra de Botucatu (Southeast Brazil) during the Late Pleistocene and Holocene. Journal Earth Science Climatic Change, v.4, n. 1, p. 134-143, 2013.

BUENO, M.; PENNINGTON, R. T.; DEXTER K. G.; KAMINO, L. H. Y.; PONTARA, L.; NEVES, D. R. M.; RATTER, J. A.; OLIVEIRA-FILHO, A. T. Effects of Quaternary Climatic Fluctuations on the Distribution of Neotropical Savanna Tree Species. Ecography, v. 40, n. 1, p. 403-414, 2017.

CARVALHO, N. O. Hidrografia da bacia do alto Paraguai. In: SIMPÓSIO SOBRE RECURSOS NATURAIS E SOCIOECONÔMICOS DO PANTANAL. 1º, 1986, Brasília: Embrapa, 1986, p.43-50.

ELITH, J.; PHILLIPS, S. J.; HASTIE, T.; DUDIK, M.; CHEE, Y. E.; YATES, C. J. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, v. 17, p. 43-57, 2011.

FERREIRA, M. G. R. Buriti (Mauritia flexuosa L.) Porto Velho, RO, Embrapa, 2005, p. 2-3.

FICK, S. E.; HIJMANS, R. J. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. International Journal of Climatology, v. 37, n. 12, p. 4302-4315, 2017.

GARDNER, T. A.; BARLOW, J.; CHAZDON, R.; EWERS, R. M.; HARVEY, C. A.; PERES, C. A.; SODHI, N. S. Prospects for tropical forest biodiversity in a humanmodified world. Ecology Letters, v. 12, n. 1, p. 561582, 2009.

GIANNINI, T. C.; SIQUEIRA, M. F.; ACOSTA, A. L.; BARRETO, F. C. C.; SARAIVA, A. M.; dos SANTOS, A. A. Desafios atuais da modelagem preditiva de distribuição de espécies. Rodriguésia, v. 63, n. 3, p. 733-749, 2012.

HAWKINS, B. A.; MONTOYA, D.; RODRÍGUEZ, M. Á.; OLALLA-TÁRRAGA, M. Á.; ZAVALA, M. Á. Global models for predicting woody plant richness from climate: comment. Ecology, v. 88, n. 1, p. 255-259, 2007.

HIJMANS, R. J.; CAMERON, S. E.; PARRA, J. L.; JONES, P. G.; JARVIS, A. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, v. 25, n. 15, p. 1965-1978, 2005.

KRUCK, W.; HELMS, F.; GEYH, M. A.; SURIANO, J. M.; MARENGO, H. G.; PEREYRA, F. Late Pleistocene-Holocene History of Chaco-Pampa Sediments in Argentina and Paraguay. Quaternary Science Journal, v.60, n. 1, p 188-202, 2011.

LEITMAN, P.; SOARES, K.; HENDERSON, A.; NOBLICK, L.; MARTINS, R. C. 2015. Arecaceae In: Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Disponível em: . Acesso em: 13 Jun. 2018.

LOHMANN, L. G. 2015. Tabebuia In: Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Disponível em: . Acesso em: 13 Jun. 2018.

MARTÍNEZ-MEYER, E.; PETERSON, A. T. Conservatism of ecological niche characteristics in North American plant species over the Pleistocene-to-Recent transition. Journal of Biogeography, v. 33, n.1, p. 1779-1789, 2006.

NOGUÉS-BRAVO, D. Predicting the past distribution of species climatic niches. Global Ecology and Biogeography, v. 18, n. 5, p. 521-531, 2009.

NOGUÉS-BRAVO, D.; RODRÍGUEZ, J.; HORTAL, J.; BATRA, P.; ARAÚJO, M. Climate change, humans, and the extinction of the woolly mammoth. PLoS Biology, v. 6, n. 4, p. 685-692, 2008.

NOGUÉS-BRAVO, D.; OHLEMÜLLER, R.; BATRA, P.; ARAÚJO, M. Climate predictors of late quaternary extinctions. Evolution; international journal of organic evolution, v. 64, n. 8, p. 2442-2449, 2010.

NOSS, R. F. Indicators for monitoring biodiversity: a hierarchical approach. Conservation Biology, v. 4, n.4, p.355-364, 1990.

POTT, A. Dinâmica da vegetação do Pantanal. In: CAVALCANTI, T.C.; WALTER, B.M.T. (org.) Tópicos atuais em Botânica. Brasília: Embrapa Recursos Genéticos e Biotecnologia/Sociedade Botânica do Brasil, 2000. p. 172-182.

POTT, A.; POTT, V. Vegetação do Pantanal: fitogeografia e dinâmica. In: SIMPÓSIO DE GEOTECNOLOGIAS NO PANTANAL, 2º, 2009, Corumbá, INPE, 7-11 novembro, p. 1065-1076

POTT, A.; OLIVEIRA, A. K. M.; DAMASCENO-JUNIOR, G. A.; SILVA, J. S. V. Plant diversity of the Pantanal wetland. Brazilian Journal of Biology, v. 71, n.1, p. 265-273, 2011.

PHILLIPS S. J. A Brief Tutorial on Maxent. Network of Conservation Educators and Practitioners, Center for Biodiversity and Conservation, American Museum of Natural History. Lessons in Conservation, v. 3, n. 1, p. 108-135, 2009.

PHILLIPS, S. J.; Anderson, R. P.; Dudík, M.; Schapire, R. E.; Blair, M. Opening the black box: an open-source release of Maxent. InEcography. v. 40, n. 1, p. 887-893, 2017.

PHILLIPS, S. J.; DUDÍK, M.; SCHAPIRE, E. R. Maxent software for modeling species niches and distributions (Version 3.4.1). Disponível em: . Acessado em: 13 de Junho de 2018.

PRADO, D. E.; GIBBS, P. E. Patterns of species distribution in the dry seasonal forest of South America. Annals of the Missouri Botanical Garden, v. 80, n.1, p. 902-927, 1993.

ROSSETTI, D. F.; COHEN, M. C. L.; PESSENDA, L. C. R . Vegetation change in southwestern Amazonia (Brazil) and relationship to the late Pleistocene and Holocene climate. Radiocarbon, v. 59, n. 1, p. 69-89. 2017.

SCHMIDT, K. Distribuição potencial de espécie de Isoptera e conservação do Cerrado. 2007. Dissertação (Mestrado em Biologia Animal) - Universidade de Brasília, Brasília.

SILVA, J. S. V.; ABDON, M. M. Delimitação do pantanal brasileiro e suas sub-regiões. Pesquisa Agropecuária Brasileira. v. 33, n. especial, p. 1703-1711. 1998.

SHERMAN, G. E.; SUTTON, T.; BLAZEK, R.; HOLL, S.; DASSAU, O.; MORELY, B.; MITCHELL, T.; LUTHMAN, L. 2014. QGIS Geographic Information System. Open Source Geospatial Foundation Project. Disponível em: . Acesso em: 25 de julho de 2018.

SPECIESLINK-INCT Herbário Virtual da Flora e dos Fungos. Disponível em: . Acesso em: 30 de Março de 2018.

SVENNING, J. C.; FLØJGAARD, C.; MARSKE, K. A.; NÓGUES-BRAVO, D.; NORMAND, S. Applications of species distribution modeling to paleobiology. Quaternary Science Reviews, v. 30, n. 1, p. 2930-2947, 2011.

THE NATURE CONSERVANCY (TNCMaps). Disponível em: . Acesso em: 03 Outubro 2016.

VARELA, S.; LOBO, J. M.; RODRÍGUEZ, J.; BATRA, P. Were the Late Pleistocene climatic changes responsible for the disappearance of the European spotted hyena populations? Hindcasting a species geographic distribution across time. Quaternary Science Reviews, v. 29, n.1, p. 2027-2035, 2010.

WALTARI, E.; GURALNICK, R. P. Ecological niche modelling of montane mammals in the Great Basin, North America: examining past and present connectivity of speciesacross basins and ranges. Journal of Biogeography, v. 36, n.1, p. 148–161, 2009.

WHITNEY, B. S.; MAYLE, F. E.; PUNYASENA, S. W.; FITZPATRICK, K. A.; BURN, M. J.; GUILLEN, R.; CHAVEZ, E.; MANN, D.; PENNINGTON, R. T.; METCALFE, S. E. A 45kyr paleoclimate record from the lowland interior of tropical South America. Palaeogeography, Palaeoclimatology, Palaeoecology. v. 307, n. 1, p. 177-192, 2011.

WORLDCLIM - Global Climate Data, Free climate data for ecological modeling and GIS. Disponível em:. Acesso em: 30 de março de 2017.

ZANELLA, F. C. V. Evolução da biota da diagonal de formações abertas secas da América do Sul. In: CARVALHO, C. J. B. de; ALMEIDA, E. A. B. (Org.). Biogeografia da América do Sul: padrões e processos. São Paulo: Roca, 2011, p. 241-260.