REMOTE SENSING APPROACH TO QUANTIFY CARBON DIOXIDE EMISSIONS FROM SUGARCANE PREHARVEST BURNING
Resumo
Biomass burning is a major disturbance factor for ecosystems and has an important role in climate and in the Earth system, mainly due to the release of greenhouse gases, such as CO2, into the atmosphere, being observed an increase in these emissions over the last decades caused by human action. However, some initiatives were and are being proposed to reduce greenhouse gases emissions from biomass burning, for example, the Green Ethanol Protocol, which proposes the end of sugarcane pre-harvest burning in São Paulo state (Brazil), therefore, it is important to quantify the effectiveness of these proposals. In this context, this study aims to quantify the reduction in CO2 emissions from sugarcane pre-harvest burning in São Paulo state between 2008 and 2014 using multiplatform orbital remote sensing data and the method based on Fire Radiative Power (FRP). Results show a significant decrease in the estimates obtained between 2008 and 2014; total annual CO2 emitted in 2014 was approximately 5.2% of annual emissions in 2008, and 4.1% of total emissions in 2010, when they were highest. Considering the results found, it was possible to conclude that Green Ethanol Protocol presents positive results in reducing emissions of CO2 associated to sugarcane pre-harvest burning in São Paulo state.
Palavras-chave
Referências
AGUIAR, D. A.; RUDORFF, B. F. T.; ADAMI, M.; SHIMABUKURO, Y. E. Imagens de sensoriamento remoto no monitoramento da cana-de-açúcar. Engenharia Agrícola, Jaboticabal, v. 29, p. 440-451, 2009.
AGUIAR, D. A.; RUDORFF, B. F. T.; SILVA, W. F. Monitoramento do modo de colheita da cana-de-açúcar no Estado de São Paulo -Brasil por meio de imagens de sensores orbitais em dois anos-safra. Revista SELPER, Bogotá, v. 30, p. 34-43, 2010.
AGUAIR, D. A.; RUDORFF, B. F. T.; SILVA, W. F.; ADAMI, M.; MELLO, M. P. Remote sensing images in support of environmental protocol: monitoring the sugarcane harvest in São Paulo, Brazil. Remote Sensing, Basel, v.3, p. 2682-2703, 2011.
ANDREAE, M. O.; MERLET, P. Emissionof trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, Washington, v.4, p. 955-966, 2001.
BORDONAL, R. O.; FIGUEIREDO, E. B.; AGUIAR, D. A.; ADAMI, A.; RUDORFF, B. F. T.; LA SCALA, N. Greenhouse gas mitigation potential from greenharvested sugarcane scenarios in São Paulo State, Brazil. Biomass & Energy, Amsterdam, v. 59, p. 195-207, 2013.
BURLING, I. R.; YOKELSON, R. J.; GRIFFITH, D. W. T.; JOHNSON, T. J.; VERES, P.; ROBERTS, J. M.; WARNEKE, C.; URBANSKI, S. P.; REARDON, J.;WEISE, D. R.; HAO, W. M.; DE GOUW, J. Laboratory measurements of trace gas emissions from biomass burning of fuel types from the Southeastern and Southwestern United States. Atmospheric Chemistry and Physics Discussion, Gottingen, v. 10, p. 16425-16473, 2010.
CANASAT. Sugarcane Crop Mapping in Brazil by Earth Observing Satellite Images: Maps and Graphs. São José dos Campos: INPE, 2016. Available in: http://www.dsr.inpe.br/laf/canasat/en/. Access on 14 mar. 2016.
COELHO, C. A. S.; DE OLIVEIRA, C. P.; AMBRIZZI, T.; REBOITA, M. S.; CARPENEDO, C. B.; CAMPOS,
MATAVELI,G.A.V.,PEREIRA,G., MORAES,E.C. e J. L. P. S.; TOMAZIELLO, A. C. N.; PAMPUCH, L. A.; CUSTÓDIO, M. D. S.; DUTRA, L. M. M.; DA ROCHA, R. P.; REHBEIN, A.: The 2014 southeast Brazil austral summer drought: regional scale mechanisms and teleconnections. Climate Dynamics, New York, v. 46, p. 3737-3752, 2016.
FORSTER, P.; RAMASWAMY, V.; ARTAXO, P.; BERNTSEN, T.; BETTS, R.; FAHEY, D. W.; HAYWOOD, J.; LEAN, J.; LOWE, D. C.; MYHRE, G.; NGANGA, J.; PRINN, R.; RAGA, G.; SCHULZ, M.; VAN DORLAND, R. Changes inAtmospheric Constituents and in Radiative Forcing. In: SOLOMON, S. D.; QIN, M.; MANNING, Z.; CHEN, M.; MARQUIS, K. B.; AVERYT, M. T.; MILLER, H. L (Ed.).Climate Change 2007: The Physical Science Basis. Cambridge: Cambridge University, 2007. p. 129-234.
FRANÇA, D. A.; LONGO, K. M.; NETO, T. G. S.; SANTOS. J. C.; FREITAS, S. R.; RUDORFF, B. F. T.; CORTEZ, E. V.; ANSELMO, E; CARVALHO JUNIOR, J. A. Pre-harvest sugarcane burning: determination of emission factors through laboratory measurements. Atmosphere, Basel, v. 3, p. 164-180, 2012.
FREEBORN, P. H.; WOOSTER, M. J.; HAO, W. M.; RYAN, C. A.; NORDGREN, B. L.; BAKER, S. P.; ICHOKU, C. Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires. Journal of Geophysical Research, Washington, v. 113, p. 1301-1318, 2008.
FREEBORN, P. H.; WOOSTER, M. J.; ROBERTS, G. Addressing the spatiotemporal sampling design of MODIS to provide estimates of the fire radiative energy emitted from Africa. Remote Sensing of Environment, Amsterdam, v. 115, p. 475-498, 2011.
GIGLIO, L.; KENDALL, J.; MACK, R. A multi-year active fire dataset for the tropics derived from the TRMM VIRS. International Journal of Remote Sensing, London, v. 24, p. 4505-4525, 2003.
HANTSON, S.; PADILLA, M.; CORTI, D.; CHUVIECO, E. Strengths and weaknesses of MODIS hotspots to characterize global fire occurrence. Remote Sensing of Environment, Amsterdam, v.131, p. 152-159, 2013.
ICHOKU, C.; KAUFMAN, Y. J. A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE Transactions on Geoscience and Remote Sensing, New York, v. 43, p. 2636-2649, 2005.
ICHOKU, C.; GIGLIO, L.; WOOSTER, M. J.; REMER, L. Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment, Amsterdam, v. 112, p. 2950-2962, 2008.
ICHOKU, C.; KAHN, R.; CHIN, M. Satellite contributions to the quantitative characterization of biomass burning for climate modeling. Atmospheric Research,Amsterdam, v.111, p. 1-28, 2012.
ICHOKU, C.; ELLISON, L. Global top-down smoke-aerosol emissions estimation using satellite fire radiative power measurements. Atmospheric Chemistry and Physics, Gottingen, v. 14, p. 6643-6667, 2014.
JUSTICE, C. O.; GIGLIO,L.; KORONTZI, S.; OWENS, J.; MORISETTE, J. T.; ROY, D. The MODIS fire products. Remote Sensing of Environment, Amsterdam, v. 83, p. 244−262, 2002.
KAISER, J. W.; HEIL, A.; ANDREAE, M. O.; BENEDETTI, A.; CHUBAROVA, N.; JONES, L.; MORCRETTE. J. J.; RAZINGER, M.; SCHULTZ, M. G.; SUTTIE, M.; VAN DER WERF, G. R. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences, Gottingen, v.9, p. 527-554, 2012.
LEVINE, J. S. Biomass burning and the production of greenhouse gases. In: ZEPP, R. G. (Ed.). Climate Biosphere Interaction: Biogenic Emissions and Environmental Effects of Climate Change. Ney York: John Wiley and Sons, 1994. p. 1-15.
MARINHO, E. V. A.; KIRCHHOFF, V. W. J. H. Projeto fogo: umexperimento para avaliar efeitos das queimadas de cana-de-açúcar na baixa atmosfera. Revista Brasileira de Geofísica, Rio de Janeiro, v.9, p.107-119, 1991.
MATAVELI, G. A. V.; PEREIRA, G.; MORAES, E. C.; OLIVEIRA, B. S.; CARDOZO, F. S. Relação entre o ângulo de visada e a estimativa da Potência Radiativa do Fogo. Boletim de Ciências Geodésicas, Curitiba, v. 21, p. 371-388, 2015 a.
MATAVELI, G. A. V.; PEREIRA, G.; OLIVEIRA, B. S.; MORAES, E. C. Uso da Potência Radiativa do Fogo para estimar a biomassa queimada e as emissões de CO2 associadas à queimada pré-colheita da cana-de-açúcar no estado de São Paulo. In: SIMPÓSIO BRASILEIRO DE SENSORIAMENTO REMOTO, XVII, 2015 b, João Pessoa: INPE, p. 1508-1515.
MOUILLOT, F.; SCHULTZ, M. G.; YUE, C.; CADULE, P.; TANSEY,K.; CIAIS, P.; CHUVIECO, E. Ten years of global burned area products from spaceborne remote sensing-A review: Analysis of user needs and recommendations for future developments. International Journal of Applied Earth Observation and Geoinformation, Amsterdam, v. 26, p. 64-79, 2014.
PEREIRA, G.; CARDOZO, F. S.; SILVA, F. B.; MORAES, E. C.; FERREIRA, N. J.; FREITAS, S. R.; SHIMABUKURO, Y. E.; BREUNIG, F. M.; VIANA, D. R. Determinação e modelagem da taxa de consumo de biomassa queimada. Revista Brasileira deMeteorologia, Rio de Janeiro, v.27, p. 13-22, 2012.
PEREIRA, G.; CARDOZO, F. S.; SHIMABUKURO, Y. E.; MORAES, E. C.; FREITAS, S. R. Estimativa da área de fogo ativo a partir da potência radiativa do fogo. Revista Brasileira de Cartografia, Brasília, v.64,n.4, p. 419-428, 2012.
PEREIRA, G.; SIQUEIRA, R.; ROSÁRIO, N. E.; LONGO, K. L.; FREITAS, S. R.; CARDOZO, F. S.; KAISER, J. W.; WOOSTER, M. J. Assessment of fire emissions inventories during the South American Biomass Burning Analysis (SAMBBA) experiment. Atmospheric Chemistry and Physics, Gottingen, v. 1, p. 1-23, 2016.
ROBERTS, G.; WOOSTER, M. J.; PERRY, G. L. W.; DRAKE, N.; REBELO, L. M.; DIPOTSO, F. Retrieval of biomass combustion rates and totals from fire radiative power observations: Application to southern Africa using geostationary SEVIRI imagery. Journal of Geophysical Research, Washington, v. 110, p. 1-20, 2005.
ROBERTS, G.; WOOSTER, M. J. Fire detection and fire characterization over Africa using Meteosat SEVIRI. IEEE Transactions on Geoscience and Remote Sensing, New York, v. 46, p. 1200−1218, 2008.
RUDORFF, B. F. T.; AGUIAR, D. A.; SILVA, W. F.; SUGAWARA, L. M.; ADAMI, M.; MOREIRA, M. A. Studies on the rapid expansion of sugarcane for ethanol production in São Paulo State (Brazil) using Landsat data. Remote Sensing, Basel, v.2, p. 1057–1076, 2010.
SEILER, W.; CRUTZEN, P.J. Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change, Berlin, v. 2, n. 1, p. 207–248, 1980.
SHIMABUKURO, Y. E.; PEREIRA, G.; CARDOZO, F. S.; STOCKLER, R.; FREITAS, S. R.; COURA, S. M. C. Biomass burning emission estimation in Amazon tropical forest. In: SEGURA, D. A.; DI BELLA, C. M.; STRASCHNOY. J. V. (Org.). Earth Observation of Ecosystem Services. Oxford: Taylor & Francis, 2013. 7, 112-130.
WOOSTER, M. J. Small-scale experimental testing of fire radiative energy for quantifying mass combusted in natural vegetation fires. Geophysical Research Letters, Washington, v.29, n.21, p. 23-1-23-4, 2002.
WOOSTER, M. J.; ROBERTS, G.; PERRY, G.; KAUFMAN, Y. J. Retrieval of biomass combustion rates and totals from fire radiative power observations: calibration relationships between biomass consumption and fire radiative energy release. Journal of Geophysical Research, Washington, v.110, p. 83-107, 2005.
DOI: http://dx.doi.org/10.5380/raega.v42i0.46627