ADJUSTMENT OF THE CONSERVATION PRACTICES FACTOR CALCULATION IN ESTIMATING SOIL LOSS

Autores

DOI:

https://doi.org/10.5380/raega.v63i1.100335

Resumo

Agricultural intensification without conservation practices exacerbates soil loss, affecting productivity and ecosystems. In the Sorocabuçu River Basin, this issue is intensified by agricultural activities. The RUSLE method, used to estimate soil loss, has limitations in calculating the P factor, as it applies the default value of 1 in the absence of conservation practices, disregarding the area's actual conditions. This study proposes adjusting the calculation of the P factor based on data from the Brazilian Agricultural Census (IBGE), including information on conservation practices and property sizes. In 2006, 38.72% of the 935 establishments adopted conservation practices, with an average soil loss of 11.42 t/ha.year; using P equal to 1, this average was 12.0 t/ha.year. In 2017, only 12.5% of the 720 establishments followed such practices, resulting in an average soil loss of 11.44 t/ha.year, while P equal to 1 indicated 11.74 t/ha.year. Contour planting was predominant, adopted by 89% and 88% of properties in 2006 and 2017, respectively. Areas with higher soil loss were associated with large-scale farming without conservation measures. Despite minor numerical differences, the adjusted model proved more efficient, accurately representing the basin's reality. This study highlights the importance of incorporating conservation practices in the P factor calculation for better soil loss estimation and preserving soil and ecosystems in the Sorocabuçu River Basin, with potential applicability to other study areas.

Biografia do Autor

Ana Laura De Paula, Universidade Estadual Paulista

Mestra em Ciências Ambientais, com foco na linha de pesquisa em Geoprocessamento e Modelagem Matemática Ambiental, pelo Programa de Pós-Graduação em Ciências Ambientais da Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP). Atualmente, cursa doutorado no mesmo programa. Também é Gestora Ambiental formada pelo Instituto Federal do Sul de Minas (IFSULDEMINAS), Campus Poços de Caldas.

Arthur Pereira dos Santos, Universidade Estadual Paulista ‘’Julio Mesquita Filho’’ (Unesp)

Doutor, atuando na linha de pesquisa de Geoprocessamento e Modelagem Matemática Ambiental, pelo Programa de Pós-Graduação em Ciências Ambientais da Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP). Mestre na linha de pesquisa de Gestão e Monitoramento Ambiental pelo Programa de Pós-Graduação em Meio Ambiente e Qualidade Ambiental da Universidade Federal de Uberlândia (UFU) (2020), e Engenheiro Ambiental e Sanitarista pela Universidade do Oeste Paulista (2018), com especialização em Engenharia de Produção pela Universidade Federal de Juiz de Fora (UFJF) (2024). Possui experiência em diversas vertentes do Sensoriamento Remoto e do geoprocessamento aplicados aos setores público e privado, com foco em monitoramento climático urbano, análise espacial do uso da terra e aplicação de índices espectrais em estudos multitemporais, fornecendo subsídios técnicos para o planejamento e a gestão territorial. Atua na modelagem matemática e em projeções de cenários futuros, contribuindo para o planejamento urbano, a adaptação climática, a transição para energias limpas e a infraestrutura sustentável. Também possui experiência no gerenciamento de bancos de dados em ambiente SIG, desenvolvendo soluções geotecnológicas para apoio estratégico na tomada de decisões, tanto no setor público (eficiência urbana, descarbonização e transição energética) quanto no privado (sustentabilidade do setor sucroenergético). Atualmente, aprofunda-se na área de Inteligência Artificial (IA), com foco em técnicas de Machine Learning aplicadas como subsídio à gestão territorial.

Frederico Belfort Poletti, Universidade Estadual Paulista ‘’Julio Mesquita Filho’’ (Unesp)

Possui Mestrado em Ciências Ambientais, com ênfase na linha de pesquisa em Geoprocessamento e Modelagem Matemática Ambiental, pelo Programa de Pós-Graduação em Ciências Ambientais da Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP). Atualmente é doutorando no mesmo programa. É Engenheiro Ambiental formado pela UNESP – campus de Sorocaba (2010), com MBA em Gestão e Tecnologias Ambientais pela Universidade de São Paulo (USP, 2013). Desde 2013, atua como servidor efetivo (CLT/Concurso Público) na Companhia Ambiental do Estado de São Paulo (CETESB). Entre 2013 e 2017, desempenhou a função de Agente Credenciado na Agência Ambiental de Mogi das Cruzes, sendo posteriormente promovido a Supervisor Técnico entre 2017 e 2024. Atualmente está lotado na Agência Ambiental de Avaré/SP, onde exerce a função de Agente Credenciado, com atribuições voltadas à fiscalização e ao licenciamento ambiental de fontes de poluição, bem como de atividades potencialmente degradantes do meio ambiente e dos recursos naturais.

Roberto Wagner Lourenço, Universidade Estadual Paulista ‘’Julio Mesquita Filho’’ (Unesp)

Graduado pela UNESP em Geografia (1995), com mestrado e doutorado em Geociências e Meio Ambiente obtidos em 1998 e 2002 respectivamente, ambos pela Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP). Atuou como Pós-doc no ano de 2003 pelo Departamento de Saúde Coletiva da Faculdade de Medicina de Botucatu (UNESP). Obteve em 2012 o título de Livre docente em Geoprocessamento pela Unesp Campus de Sorocaba. Atualmente é Professor Adjunto da Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP) Campus de Sorocaba. É responsável pelas disciplinas de Geoprocessamento, Sensoriamento Remoto e Sistema de Informações Geográficas e Aplicações Ambientais do curso de Engenharia Ambiental, atuando principalmente nas áreas de Geoprocessamento, Sensoriamento Remoto, Planejamento e Gestão Territorial, bem como em Saúde Ambiental. É credenciado no programa de Pós-Graduação em Ciências Ambientais do Instituto de Ciência e Tecnologia de Sorocaba (ICT-UNESP) e no Programa da Faculdade de Ciências Médicas de Campinas (UNICAMP) - Área de Concentração em Saúde Coletiva e Preventiva Social.

Referências

AHANEKU, I. E.; EZINNA, K. C.; ORJI, F. N.; ALANEME, G. U.; CHUKWUDI, E. E. Socioeconomic spatial analysis through fuzzy system as a tool for territorial planning applied to watersheds. International Journal of River Basin Management, p. 1–17, 2024. https://doi.org/10.1080/15715124.2024.2387579.

ARANTES, L. T.; SANTOS, A. P.; SILVA, D. C. C.; LOURENÇO, R. W. Indicador de vulnerabilidade ao carreamento de sedimentos integrados ao SIG e SR. Geo UERJ, (45), 2024. https://doi.org/10.12957/geouerj.2024.74164.

ARANTES, L. T. Elaboração de uma metodologia baseada em redes neurais artificiais para o zoneamento ecológico-econômico em bacias hidrográficas. 2023. Tese (Doutorado em Ciências Ambientais) – Universidade Estadual Paulista “Júlio de Mesquita Filho”, Área de Concentração Diagnóstico, Tratamento e Recuperação Ambiental, 2023.

ASH, C. Agricultural soil loss. Science, v. 371, p. 1217-1218, 2021. https://doi.org/10.1126/SCIENCE.371.6535.1217-C

AYELE, G. G. T.; SEKA, A. M.; TADDESE, H.; JEMBERRIE, M. A.; NDEHEDEHE, C. E.; DEMISSIE, S. S.; AWANGE, J. L.; JEONG, J.; HAMILTON, D. P.; MELESSE, A. M. Relationship of soil attributes and topography with land cover change in the Rift Valley Basin, Ethiopia. Remote Sensing, v. 14, n. 3257, 2022. https://doi.org/10.3390/rs14143257.

BĂRBULESCU, A.; ȘERBAN, C.; INDRECAN, M. Computing the beta parameter in IDW interpolation using a genetic algorithm. Water, v. 13, n. 6, 2021. https://doi.org/10.3390/W13060863.

BERTONI, J. Conservação do solo e da água. 4. ed. rev. e ampl. São Paulo: Ícone, 1999.

BERTONI, J.; LOMBARDI NETO, F. Conservação do solo. 5. ed. São Paulo: Ícone, 2005.

BORRELLI, P.; ROBINSON, D. A.; PANAGOS, P.; LUGATO, E.; YANG, J. E.; ALEWELL, C.; WUEPPER, D.; MONTANARELLA, L.; BALLABIO, C. Land use and climate change impacts on global soil erosion by water (2015-2070). Proceedings of the National Academy of Sciences, v. 117, n. 36, p. 21994–22001, 2020.

CLEMENT, T.; BIELDERS, C.; DEGRÉ, A. How conservation farming practices mitigate runoff and soil erosion under Western European conditions: A focus on conservation tillage, contour bunds, and winter cover crops. Soil Use and Management, v. 40, 2024. https://doi.org/10.1111/sum.13047.

DE AGUIAR, T.; NUNES, D.; WATANABE, M.; THOMAZ, E.; DA SILVA NUNES, A.; AUGUSTO, A. Influência da conversão floresta-pastagem na erodibilidade de um latossolo vermelho amarelo distrófico com diferentes temporalidades de desmatamento no sudoeste da Amazônia. Revista Brasileira de Geografia Física, 2024. https://doi.org/10.26848/rbgf.v17.3.p1921-1941.

DIDONÉ, E. J.; GOMES MINELLA, J. P.; ALLASIA PICCILLI, D. G. How to model the effect of mechanical erosion control practices at a catchment scale? International Soil and Water Conservation Research, v. 9, n. 3, p. 370–380, 2021.

DODD, R. J.; SHARPLEY, A. N. Conservation practice effectiveness and adoption: unintended consequences and implications for sustainable phosphorus management. Nutrient Cycling in Agroecosystems, v. 104, n. 3, p. 373–392, 2016.

EMBRAPA. Manual de métodos de análise de solo. 3. ed. revista e ampliada. Brasília, DF: Embrapa, 2017.

FIORIO, P. R. Cronologia do uso da terra e seu impacto no ambiente da Microbacia hidrográfica do Córrego do Ceveiro da Região de Piracicaba, SP. 1998. 114 p. Dissertação (Mestrado em Solos e Nutrição de Plantas) – Universidade de São Paulo, São Paulo, 1998.

FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. Soil Organic Carbon: the hidden potential. Rome: Organization of the United Nations, 2017.

GASHAW, T.; WORQLUL, A. W.; DILE, Y. T.; ADDISU, S.; BANTIDER, A.; ZELEKE, G. Evaluating potential impacts of land management practices on soil erosion in the Gilgel Abay watershed, upper Blue Nile basin. Heliyon, v. 6, n. 8, p. e04777, 2020.

GAUBI, A.; CHAABANI, A.; BEN MAMMOU, A.; HAMZA, M. H. A GIS-based soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) (Lebna watershed, Cap Bon, Tunisia). Natural Hazards, v. 86, n. 1, p. 219–239, 2017.

GUERRA, A. J. T.; FULLEN, M. A.; JORGE, M. C. O.; ALEXANDRE, S. T. Soil erosion and conservation in Brazil. Anuário do Instituto de Geociências, v. 37, n. 1, p. 81-91, 2014.

GUO, Z.; WU, L.; LIU, S.; ZHANG, H. Y.; DU, B.; RUAN, B. An integrated watershed modelling framework to explore the covariation between sediment connectivity and soil erosion. European Journal of Soil Science, v. 74, n. 5, 2023.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. IBGE cidades. 2022. Disponível em: https://cidades.ibge.gov.br/brasil/sp/ibiuna/panorama. Acesso em: 10 fev. 2024.

KASSAM, A.; DERPSCH, R.; FRIEDRICH, T. Global achievements in soil and water conservation: The case of Conservation Agriculture. International Soil and Water Conservation Research, v. 2, n. 1, p. 5-13, 2014.

LANDIM, P. M. B. Análise estatística de dados geológicos. São Paulo: UNESP, 1998. 226 p.

MAHALA, A. Soil erosion estimation using RUSLE and GIS techniques - a study of a plateau fringe region of tropical environment. Arabian Journal of Geosciences, v. 11, n. 335, 2018.

MAIA JÚNIOR, L. P.; LOURENÇO, R. W. Impactos das mudanças no uso e cobertura da terra sobre a variabilidade do albedo na Bacia Hidrográfica do Rio Sorocabuçu (Ibiúna - SP). Revista Brasileira de Climatologia, v. 27, p. 443–462, 2020.

MALTSEV, K. A.; YERMOLAEV, O. P. Erosion Losses of Soils on Arable Land in the European part of Russia. IOP Conference Series Earth and Environmental Science, v. 107, p. 012014–012014, 2018.

MARTINS, V.; KALEITA, A.; GELDER, B. Digital Mapping of Structural Conservation Practices on Farmlands in the U.S. Midwest: Implementation and Preliminary Analysis. The Science of the Total Environment, v. 772, p. 145191, 2021. https://doi.org/10.1016/j.scitotenv.2021.145191.

MEENA, R. S.; KUMAR, S.; DATTA, R.; LAL, R.; VIJAYAKUMAR, V.; BRTNICKY, M.; SHARMA, M. P.; YADAV, G. S.; JHARIYA, M. K.; JANGIR, C. K.; PATHAN, S. I.; DOKULILOVA, T.; PECINA, V.; MARFO, T. D. Impact of agrochemicals on soil microbiota and management: A review. Land, v. 9, n. 2, p. 34, 2020.

MOREIRA, M. C. Programa computacional para estimativa da erosividade da chuva no estado de São Paulo utilizando redes neurais artificiais. Engenharia na Agricultura, v. 14, n. 2, p. 88-92, 2006.

PANAGOS, P. Modelling the effect of support practices (P-factor) on the reduction of soil erosion in Europe. Environmental Science & Policy, v. 51, p. 23-34, 2015.

PENDRILL, F.; PERSSON, U. M.; GODAR, J.; KASTNER, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environmental Research Letters, v. 14, n. 5, p. 055003, 2019.

PORTO, P.; WALLING, D. E.; CAPRA, A. Using 137Cs and 210Pbex measurements and conventional surveys to investigate the relative contributions of interrill/rill and gully erosion to soil loss from a small cultivated catchment in Sicily. Soil & Tillage Research, v. 135, p. 18–27, 2014.

RAJBANSHI, J.; BHATTACHARYA, S. Assessment of soil erosion, sediment production, and basin-specific control factors using RUSLE-SDR and PLSR approaches in the Konar River Basin, India. Journal of Hydrology, v. 587, p. 124935, 2020.

READ, D.; WAINGER, L. Assessing intervention effectiveness at promoting voluntary conservation practice adoption in agrienvironments. Conservation Biology, v. 37, 2022. https://doi.org/10.1111/cobi.14009

RENARD, K.; FOSTER, G.; WEESIES, G.; PORTER, J. RUSLE: Revised Universal Soil Loss Equation. Journal of Soil and Water Conservation, v. 46, p. 30-33, 1991. https://doi.org/10.1201/9780203739358-5

ROSSI, M. Mapa pedológico do Estado de São Paulo: revisado e ampliado. São Paulo: Instituto Florestal, 2017.

SALES, J. C. A.; ARANTES, L. T.; NERY, L. M.; SANTOS, A. P.; SILVA, D. C. C.; LOURENÇO, R. W. Spatial analysis of sediment transport by area of contribution of tributaries without vegetation cover in the Una River basin. GeoFocus. International Review of Geographical Information Science and Technology, (34), p. 45–62, 2024. https://doi.org/10.21138/GF.856

SANTOS, A. P.; SILVA JUNIOR, A. X.; NERY, L. M.; GOMES, G.; TONIOLO, B. P.; SILVA, D. C. C.; LOURENÇO, R. Random forest algorithm applied to model soil textural classification in a river basin. Environmental Monitoring and Assessment, v. 197, art. 330, 2025. https://doi.org/10.1007/s10661-025-13786-0

SANTOS, A. P.; ARANTES, L. T.; PAULA, A. L.; SILVA, D. C. C. Evaluation of agricultural expansion as an indicator of environmental degradation in the Northwestern Mesoregion of the state of Minas Gerais, Brazil. GeoFocus. International Review of Geographical Information Science and Technology, n. 33, p. 7–26, 2024. https://doi.org/10.21138/GF.839

SILVA, A. M.; ALVARES, C. A. Levantamento de informações e estruturação de um banco de dados sobre a erodibilidade de classes de solos no Estado de São Paulo. Revista Geociências, v. 24, n. 1, p. 33-41, 2005.

TAYE, G.; VANMAERCKE, M.; POESEN, J.; VAN WESEMAEL, B.; TESFAYE, S.; TEKA, D.; NYSSEN, J.; DECKERS, J.; HAREGWEYN, N. Determining RUSLE P- and C-factors for stone bunds and trenches in rangeland and cropland, North Ethiopia. Land Degradation & Development, v. 29, n. 3, p. 812–824, 2018.

TUFA, A.; KANYAMUKA, J.; ALENE, A.; NGOMA, H.; MARENYA, P.; THIERFELDER, C.; BANDA, H.; CHIKOYE, D. Adoption of conservation agricultural practices in Southern Africa: a mixed methods approach. Frontiers in Sustainable Food Systems, v. 7, 2023. https://doi.org/10.3389/fsufs.2023.1151876

WEILER, E. B.; TAMIOSSO, M. F.; CRUZ, J. C.; REICHERT, J. M.; SCHORR, L. P. B.; MANTOVANELLI, B. C.; DOS SANTOS, F. D.; FANTINEL, R. A.; BAUMHARDT, E. Management and Integrated Environmental Planning based on Soil Erosion Susceptibility Scenarios. Annals of the Brazilian Academy of Sciences, v. 93, n. 4, e20191120, 2021. https://doi.org/10.1590/0001-3765202120191120

WISCHMEIER, W. H.; SMITH, D. D. Predicting rainfall erosion losses: a guide to conservation planning. Washington, DC: USDA (Agriculture Handbook, 537), 1978.

XIONG, M.; SUN, R.; CHEN, L. Global analysis of support practices in USLE-based soil erosion modeling. Remote Sensing, v. 43, n. 3, p. 391–409, 2019.

YAMAMOTO, J. K.; LANDIM, P. M. B. Geoestatística: Conceitos e Aplicações. São Paulo: Oficina de Textos, 2013.

ZHU, M. Soil erosion assessment using USLE in the GIS environment: a case study in the Danjiangkou Reservoir Region, China. Environmental Earth Sciences, v. 73, n. 12, p. 7899–7908, 2014.

Downloads

Publicado

2025-08-30

Como Citar

De Paula, A. L., Pereira dos Santos, A., Belfort Poletti, F., & Wagner Lourenço, R. (2025). ADJUSTMENT OF THE CONSERVATION PRACTICES FACTOR CALCULATION IN ESTIMATING SOIL LOSS. Ra’e Ga: O Espaço Geográfico Em Análise, 63(1), 125–151. https://doi.org/10.5380/raega.v63i1.100335

Edição

Seção

Artigos