A ambigüidade em perfis da floresta e extinção estimada por interferometria SAR através de múltiplas linhas de base
DOI:
https://doi.org/10.5380/bcg.v15i3.15509Keywords:
Interferometry, Forest, Extinction Coefficient, SAR, InSAR, Remote SensingAbstract
This paper demonstrates by simulation that in the estimation of vegetation profiles from multibaseline interferometric synthetic aperture radar (InSAR), the peak extinction coefficient is poorly determined for typical interferometric coherence and phase accuracies. This coefficient determines overall density and affects the relative density profiles estimated from interferometry. This paper shows that a given radar power profile gives rise to a family of vegetation density profiles, depending on the peak extinction assumed. It is further demonstrated that estimating the peak
extinction requires coherence accuracies of better than 0.1% and phase accuracies of better than a few tenths of a degree, both of which exceed the performance of typical or envisioned SAR systems. Two recommended approaches to profile production with InSAR are 1) use the radar power profile instead of the vegetation
density profile for biomass estimation and other ecosystem characterization (in analogy to LIDAR power which is most frequently used for lidar studies of biomass) or 2) apply external information to establish the extinction characteristics needed for vegetation density profiles.
Downloads
Published
How to Cite
Issue
Section
License
Submission of an original manuscript to the Journal will be taken to mean that it represents original work not previously published, that is not being considered elsewhere for publication.
The BCG allows the author(s) to hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
The BCG also allows the authors to retain publishing rights without restrictions.
