Semantic data dictionary for annotating performance indicators for hospital management

Authors

DOI:

https://doi.org/10.5380/atoz.v12i0.88109

Keywords:

Dimensional Models, Key Performance Indicator (KPI), Hospital Management, Data Dictionary, Ontology, Semantic Annotation.

Abstract

Introduction: Hospital management is a fundamental activity to comply with laws and regulations, especially in times of health crisis. Management strategies use different indicators (KPI or Key Performance Indicator) to control the processes within a hospital. KPIs in this segment can be the occupancy rate (daily or monthly), patient permanence index, patient renewal index or the list of hospitalized patients for disease classifications, among others. The management of the data generated by the indicators aims to support decision making and improve health services provided by the organization. Good data naming practices avoid incompatible data combinations so as not to compromise decision making. Method: It was applied in this article aims to put in practice a systematic process to prepare and integrate data from hospital indicators based on ontological modeling. Results: A process for semantic annotation of data supported by SDD (Semantic Data Dictionary) technique, which uses metadata templates to facilitate the preparation, integration and reuse of data in the hospital area, specifically for the average length of stay indicator. Conclusions: The use of ontologies in semantic annotation allows disambiguation of terms and preserves the semantics of values extracted from KPIs and opens the way for ingesting hospital KPI data from different data sources in the hospital network (public and private). Finally, the presented approach contributes to data curation, since the SDD technique follows good practices for data management in different areas. 

References

Agresti, A. (2003). Categorical data analysis. John Wiley & Sons.

Agência Nacional de Saúde Suplementar (ANS). (2020). Qualidade hospitalar: ANS divulga as fichas dos indicadores. Recuperado de http://www.ans.gov.br/aans/noticias-ans/ qualidade-da-saude/5478-qualidade-hospitalar-ans-divulga-as-fichas-dos-indicadores

Bax, M. P., & Silva, E. de O. (2019, novembro, 27, 28, 29). Anotação de dados para geração de indicadores de desempenho em organizações. Workshop de Informação, Dados e Tecnologia. Brasília. Recuperado de http://widat2019.fci.unb.br/images/Anais_WIDaT_2019.pdf#page=21

Bax, M. P., & Silva, E. de O. (2020). Dicionários semânticos de dados para integrar dados de prontuários eletrônicos de pacientes. Recuperado de http://ceur-ws.org/Vol-2728/doctorate1.pdf

Buneman, P., Khanna, S., & Wang-Chiew, T. (2001). Why and where: a characterization of data provenance. [Conferência]. International conference on database theory, Londres, 316-330. Recuperado de https://link.springer.com/chapter/10.1007/3-540-44503-X_20

Comitê Executivo de Governo Eletrônico. (2018). e-PING: padrões de interoperabilidade de governo eletrônico. Governo Federal. Recuperado de http://smeduquedecaxias.rj.gov.br/nead/Biblioteca/Forma%C3%A7%C3%A3o%20Continuada/Tecnologia/Leis/e-PING%20v2011%2003%2012%202010.pdf

Dang, J., Hedayati, A., Hampel, K., & Toklu, C. (2008). An ontological knowledge framework for adaptive medical workflow. Journal of biomedical informatics, 41(5), 829-836. https://doi.org/10.1016/j.jbi.2008.05.012

Davrieux, C. F., Palermo, M., Serra, E., et al. Giménez, M. E. (2019). Etapas e fatores do “processo perioperatório”: pontos em comum com a indústria aeronáutica. Arquivos Brasileiros de Cirurgia Digestiva. 32(1). https://doi.org/10.1590/0102-672020180001e1423

DBPEDIA. (2020). About: triplestore. Recuperado de http://dbpedia.org/page/Triplestore

Diamantini, C., Potena, D., & Storti, E. (2016). SemPI: a semantic framework for the collaborative construction and maintenance of a shared dictionary of performance indicators. Future Generation Computer Systems (FGCS), 54, 352-365. https://doi.org/10.1016/j.future.2015.04.011

Erling, O., & Mikhailov, I. (2009). RDF Support in the Virtuoso DBMS. In Tassilo P., Sóren A., Klaus T., & Sebastian S. (Eds), Networked Knowledge-Networked Media: Integrating Knowledge Management, New Media Technologies and Semantic Systems. Springer, Berlin, Heidelberg, 7-24. Recuperado de https://link.springer.com/chapter/10.1007/978-3-642-02184-8_2

Hogan, A., Blomqvist, E., Cochez, M., et al. & Zimmermann, A. (2021). Knowledge graphs. ACM Computing Surveys (CSUR), 54(4), 1-37. doi: https://doi.org/10.1145/3447772

Kimball, R., & Ross, M. (2013). The data warehouse toolkit: the definitive guide to dimensional modeling. John Wiley & Sons.

Krotzsch, M., Simancik, F., & Horrocks, I. A description logic primer. arXiv preprint, arXiv:1201.4089, 2012. doi: https://doi.org/10.48550/arXiv.1201.4089

Medeiros, C. B. (2019). Gestão de dados científicos: da coleta à preservação. Recuperado de https://blog.scielo.org/blog/2018/06/22/gestao-de-dados-cientificos-da-coleta-a-preservacao/#.ZBsMx3bMKUk

Pan, J. Z., et al. (2017). Exploiting linked data and knowledge graphs in large organizations. Heidelberg: Springer.

Parmenter, D. (2015). Key performance indicators: developing, implementing, and using winning KPIs. John Wiley & Sons.

Pereira, R. (2021). Gestão do conhecimento aliada ao crescimento organizacional: perspectivas à prática hospitalar. AtoZ: novas práticas em informação e conhecimento. 10(1), 103-112. doi: http://dx.doi.org/10.5380/atoz.v10i1.75082

Protegé. WebProtegé. Recuperado de https://protege.stanford.edu/about.php

Rashid, S. M., McCusker, J. P., Pinheiro, P., et al. McGuinness. D. L. (2017). The semantic data dictionary approach to data annotation & integration. SemSci@ ISWC, 47-54. doi: https://doi.org/10.1162/dint_a_00058

Rashid, S. M., & Mcguinness, D. L. (2020). The semantic data dictionary: an approach for describing and annotating data. Data Intelligence, 2(4), 443-486. Recuperado de https://direct.mit.edu/dint/article-abstract/2/4/443/94892

Roldán-García, M. del M., García-Niéto, Maté, A. J., et al. Aldana-Montes, J. F. (2019). Ontology-driven approach for KPI meta-modelling, selection and reasoning. International Journal of Information Management, 58. doi: https://doi.org/10.1016/j.ijinfomgt.2019.10.003

Wetzstein, B., Ma, Z., & Leymann, F. (2008). Towards measuring key performance indicators of semantic business processes. [Conferência]. International conference on database theory, Londres, 227-238. Recuperado de https://link.springer.com/chapter/10.1007/978-3-540-79396-0_20

Tsai, T. C. et al. (2015). Hospital board and management practices are strongly related to hospital performance on clinical quality metrics. Health affairs, 34(8), 1304-1311. doi:

https://doi.org/10.1377/hlthaff.2014.1282

Xavier, A. C. C., & Duque, C. G. (2021). Prontuário eletrônico do paciente: qual a contribuição da arquivística e do Smart Contracts para a sua gestão na Era da Saúde 4.0? AtoZ: novas práticas em informação e conhecimento, 10(3), 1-10. doi: http://dx.doi.org/10.5380/atoz.v10i3.81267

Zaidan, F. H., & Bax, M. P. (2013). Linked open data como forma de agregar valor às informações clínicas. AtoZ: novas práticas em informação e conhecimento, 2(1), 44-59. doi: http://dx.doi.org/10.5380/atoz.v2i1.41319

Published

2023-04-25

How to Cite

da Silva, E. de O., Bax, M. P., Pereira, F. C. M., Marques, Y. B., & Melo, E. C. (2023). Semantic data dictionary for annotating performance indicators for hospital management. AtoZ: Novas práticas Em informação E Conhecimento, 12, 1–11. https://doi.org/10.5380/atoz.v12i0.88109

Issue

Section

Papers