COVID-19 INFORMATION PANEL: SPARQL QUERY AT WIKIDATA
DOI:
https://doi.org/10.5380/atoz.v9i2.76684Keywords:
COVID-19, Semantic web, Linked data, Wikidata, SPARQL.Abstract
Introduction: One of the ways of coping with COVID-19 concerns aspects related to the production and dissemination of reliable, clear and quickly understood information. There are many communicational and informational actions and initiatives in favor of dissemination and of the means that guarantee the acceptability, adherence and compliance with the prevention and control measures of COVID-19. This research aims to develop a digital environment, understood here as a panel with topics related to COVID-19, based on SPARQL Protocol and RDF Query Language (SPARQL) queries and on the Wikidata dataset. Method: To do so, a theoretical and applied methodology is used, based on the Systematic Literature Review to support the construction of the conceptual corpus underlying the computational technologies from the Semantic Web and Linked Data and its application in the structuring and modeling of the environment, for making scientific data available and sharing. Results: The data collected in the Systematic Literature Review reveal little scientific production available at the international level, however, interesting initiatives are already concerned with the openness and availability of scientific data on the Web. In addition, the information panel on COVID-19 developed is categorized into six main axes, such as Map COVID-19, Symptoms of COVID-19, Possible treatments, Taxonomy, Related works and Related images. Conclusion: Thus, the information panel about COVID-19 presents itself as a digital environment that enhances the visualization, access and sharing of data and information for heterogeneous users, contributing to the transfer of consistent, structured and reliable information, as well as the promotion of public guidelines for controlling the spread of the disease.
References
Berners-Lee, T. (2006). Linked data-design issues. Retirado de http://www.w3.org/DesignIssues/LinkedData.html.
Briner, R. B., & Denyer, D. (2012). Systematic review and evidence synthesis as a practice and scholarship tool. In: Rousseau, D. M. Handbook of evidence-based management: companies, classrooms and research (pp.112-129). Oxford: Oxford University Press. doi: https://doi.org/10.1093/oxfordhb/9780199763986.013.0007.
Campos, L. M., Campos, M. L.A., & Barbosa, N. T. (2019). A wikidata e os desafios da interoperabilidade na era dos dados abertos ligados na web: uma breve reflexão. Prisma. com, (40), 64-77. Retirado de https://ojs.letras.up.pt/index.php/prismacom/article/view/6528.
Dutta, B., & DeBellis, M. (2020). CODO: an ontology for collection and analysis of COVID-19 data. In 12th International Conference on Knowledge Engineering and Ontology Development (KEOD), 2-4 November. Retirado de https://arxiv.org/abs/2009.01210.
Ferreira, J. A., & Santos, P. L. V. A. da C. (2013). O modelo de dados resource description framework (RDF) e o seu papel na descrição de recursos. Informação & Sociedade, 23(2), 13- 23. Retirado de https://periodicos.ufpb.br/ojs/index.php/ies/article/view/15436/9681.
Fischer, T., and Jobst, M. (2020). Capturing the spatial relatedness of long-distance caregiving: a mixed-methods approach. International Journal of Environmental Research & Public Health, 17(17), 6406. doi: 10.3390/ijerph17176406.
Hyvönen, E. (2012). Publishing and using cultural heritage linked data on the semantic web. Synthesis Lectures on the Semantic Web: Theory and Technology, 2(1), 1-159. doi: 10.2200/S00452ED1V01Y201210WBE003.
Jesus, A. F., & Castro, F. F. (2019). Dados bibliográficos para o linked data: uma revisão sistemática de literatura. Brazilian Journal of Information Studies: Research Trends, 13(1), 45-55. doi: 10.36311/1981-1640.2019.v13n1.08.p45.
Nikas, C., Kadilierakis, G., Fafalios, P., and Tzitzikas, Y. (2020). Keyword search over RDF: is a single perspective enough?. Big Data and Cognitive Computing, 4(3), 22. doi: 10.3390/bdcc4030022.
Ostaszewski, M. et al. (2020). COVID-19 disease map, building a computational repository of SARS-CoV-2 virus-host interaction mechanisms. Scientific Data, 7,136.
Paletta, F. C., & Mucheroni, M. L. (2014). O desenvolvimento da web 3.0: linked data e dbpedia. Prisma.com, (25), 73-90.
Papadopoulos, D., Papadakis, N., & Litke, A. (2020). A methodology for open information extraction and representation from large scientific corpora: the CORD-19 data exploration use case. Applied Sciences, 10(16), 5630. doi: 10.3390/app10165630.
Penteado, B. E., Bittencourt, I. I., & Isotani, S. (2019). Análise exploratória sobre a abertura de dados educacionais no Brasil: como melhorar o ecossistema de dados na web? Revista Brasileira de Informática na Educação, 27(1), 175-195. doi: 10.5753/rbie.2019.27.01.175.
Sampaio, R. F., & Mancini, M. C. (2007). Estudos de revisão sistemática: um guia para síntese criteriosa da evidência científica. Revista Brasileira de Fisioterapia, 11(1), 83-89. doi: 10.1590/S1413-35552007000100013.
Santarém Segundo, J. E. (2017). Web semântica: introdução a recuperação de dados usando SPARQL. In Encontro Nacional de Pesquisa em Ciência da Informação, MG, Brasil, 15. Retirado de http://enancib2014.eci.ufmg.br/documentos/anais/anais-gt8.
Santipantakis, G. M., Vouros, G. A., & Doulkeridis, C. (2020). Towards integrated and open COVID-19. Retirado de arXiv:2008.04045.
Satti, F. A., Ali, T., Hussain, J., Khan, W. A., Khattak, A. M., Lee, S. (2020). Ubiquitous Health Profile (UHPr): a big data curation platform for supporting health data interoperability. Computing, 11,1-36. Retirado de https://www.springerprofessional.de/en/ubiquitous-health-profile-uhpr-a-big-data-curation-platform-for-/18298800.
Siddaway, A. P., Wood, A. M., & Hedges, L. V. (2019). How to do a systematic review: a best practice guide for conducting and reporting narrative reviews, meta-analyses, and meta-syntheses. Annual Review of Psychology, 70(1), 747–770. doi: 10.1146/annurev-psych-010418-102803.
Wang, L. L. et al. (2020). CORD-19: The COVID-19 Open Research Dataset. ArXiv, 22 abr. 2020. Retirado de https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge.
Wikidata. (2020a). [Número de casos e mortes de COVID-19 no mundo]. Retirado de https://w.wiki/cYB.
Wikidata. (2020b). [Sintomas relacionadas ao Covid-19]. Retirado de https://w.wiki/ca9.
Wikidata. (2020c). [Terminologia]. Retirado de https://w.wiki/ND5.
Wikidata. (2020d). [Imagens relacionadas ao Covid-19]. Retirado de https://w.wiki/ND4.
Wikidata. (2020e). [Publicações em inglês sobre o Covid-19]. Retirado de https://w.wiki/cYj
World Wide Web - W3C (2017). Boas práticas para dados na web. Retirado de https://w3c.br/traducoes/DWBP-pt-br/#BP_Benefits.
Downloads
Published
How to Cite
Issue
Section
License
Atoz is a open access journal and the authors have permission and are encouraged to deposit their papers in personal web pages, institutional repositories or portals before (pre-print) or after (post-print) the publication at AtoZ. It is just asked, when and where possible, the mention, as a bibliographic reference (including the atributted URL), to the AtoZ Journal.
The authors license the AtoZ for the solely purpose of disseminate the published work (peer reviewed version/post-print) in aggregation, curation and indexing systems.
The AtoZ is a Diadorim/IBICT green academic journal.
All the journal content (including instructions, editorial policies and templates) - except where otherwise indicated - is under a Creative Commons Attribution 4.0 International, since October 2020.
When published by this journal, articles are free to share (copy and redistribute the material in any support or format for any purpose, even commercial) and adapt (remix, transform, and create from the material for any purpose , even if commercial). You must give appropriate credit , provide a link to the license, and indicate if changes were made
AtoZ does not apply any charges regarding manuscripts submission/processing and papers publication.