Medindo o Brasil a partir do espaço: tecnologias de big data e inteligência artificial
DOI:
https://doi.org/10.5380/atoz.v10i3.81966Palavras-chave:
Big data, Artificial intelligence, Technological innovation, Data cube, Brazil Data CubeResumo
A Dr.ª Karine Reis Ferreira e o Dr. Gilberto Ribeiro de Queiroz respondem questões sobre o projeto de pesquisa Brazil Data Cube, sua finalidade, impacto e relação com inteligência artificial e big data.Referências
Ferreira, K.R., Queiroz, G.R., Vinhas, L., Marujo, R.F.B., Simoes, R.E.O., Picoli, M.C.A., Camara, G., Cartaxo, R., Gomes, V.C.F., Santos, L.A. & et al. (2020a). Earth Observation Data Cubes for Brazil: Requirements, Methodology and Products. Remote Sensing. 2020,12, 4033, doi:10.3390/rs12244033
Ferreira, K. R., Queiroz, G. R., Camara G., Souza, R. C. M., Vinhas, L., Marujo, R. F. B., Simoes, R. E. O., Noronha, C. A. F., Costa, R. W. & et al. (2020b). Using Remote Sensing Images and Cloud Services on AWS to Improve Land Use and Cover Monitoring. In: LAGIRS 2020: 2020 Latin American GRSS & ISPRS Remote Sensing Conference. Santiago de Chile, Chile, March 22-26.
Giuliani, G., Chatenoux, B., De Bono, A., Rodila, D., Richard, J.P., Allenbach, K., Dao, H. & Peduzzi, P. (2017). Building an Earth Observations Data Cube: Lessons Learned from the SwissData Cube (SDC) on Generating Analysis Ready Data (ARD). Big Earth Data, 1, 100–117, doi:10.1080/20964471.2017.1398903.
Gomes, V.C., Queiroz, G.R. & Ferreira, K.R. (2020). An Overview of Platforms for Big Earth Observation DataManagement and Analysis. Remote Sensing, 12, 1253. doi: 10.3390/rs12081253.
Gomes, V. C. F., Carlos, F. M., Queiroz, G. R., Ferreira, K. R., & Santos, R. (2021). ACCESSING AND PROCESSING BRAZILIAN EARTH OBSERVATION DATA CUBES WITH THE OPEN DATA CUBE PLATFORM, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2021, 153–159, doi: 10.5194/isprs-annals-V-4-2021-153-2021.
Killough, B. & et al. (2019) The Impact of Analysis Ready Data in the Africa Regional Data Cube. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 5646–5649, doi:10.1109/IGARSS.2019.8898321
Lewis, A., Oliver, S., Lymburner, L., Evans, B., Wyborn, L., Mueller, N., Raevksi, G., Hooke, J., Woodcock, R., Sixsmith, J. & et al. (2017). The Australian Geoscience Data Cube—Foundations and Lessons Learned. Remote Sens. Environ., 202, 276–292, doi:10.1016/j.rse.2017.03.015.13.
Picoli, M. C. A., Simoes, R., Chaves, M., Santos, L. A., Sanchez, A., Soares, A., Sanches, I. D., Ferreira, K. R. & Queiroz, G. R. (2020). CBERS DATA CUBE: A POWERFUL TECHNOLOGY FOR MAPPING AND MONITORING BRAZILIAN BIOMES. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. , v.V-3-2020, p.533 – 539, doi: 10.5194/isprs-annals-V-3-2020-533-2020
Santos, L.A., Ferreira, K.R., Camara, G., Picoli, M.C.A. & Simoes, R.E. (2021a). Quality Control and Class Noise Reduction of Satellite Image Time Series. ISPRS J. Photogramm. Remote Sens. 2021, 177, 75–88, doi:10.1016/j.isprsjprs.2021.04.014.
Santos, L.A., Ferreira, K.R, Picoli, M., Camara, G., Zurita-Milla, R. & Augustijn, E.-W. (2021b). Identifying Spatiotemporal Patterns in Land Use and Cover Samples from Satellite Image Time Series. In: Remote Sensing Journal. v. 13, p. 974, 2021. doi: 10.3390/rs13050974
Simoes, R., Camara, G., Queiroz, G., Souza, F., Andrade, P.R., Santos, L., Carvalho, A. & Ferreira, K. (2021). Satellite Image Time Series Analysis for Big Earth Observation Data. Remote Sensing. v.13, p.2428, doi: 10.3390/rs13132428.
Soille, P., Burger, A., De Marchi, D., Kempeneers, P., Rodriguez, D., Syrris, V. & Vasilev, V. (2018) A versatile data-intensive computing platform for information retrieval from big geospatial data. Future Generation Computer Systems, v. 81, p. 30–4, doi: 10.1016/j.future.2017.11.007.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
A revista AtoZ é um periódico científico de acesso aberto e o copyright dos artigos e da entrevista pertence aos respectivos autores/entrevistados com cessão de direitos para a AtoZ no que diz respeito à inclusão do material publicado (revisado por pares/postprint) em sistemas/ferramentas de indexação, agregadores ou curadores de conteúdo.
Todo o conteúdo da Revista (incluindo-se instruções, política editorial e modelos) está sob uma licença Creative Commons Atribuição 4.0 Não Adaptada, a partir de Outubro de 2020.
Ao serem publicados por esta Revista, os artigos são de livre uso para compartilhar (copiar e redistribuir o material em qualquer suporte ou formato para qualquer fim, mesmo que comercial) e adaptar (remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial). É preciso dar o crédito apropriado , prover um link para a licença e indicar se mudanças foram feitas .
A AtoZ não cobra qualquer tipo de taxa para submissão e/ou processamento e/ou publicação de artigos.