Measuring Brazil from space: and artificial intelligence technologies
DOI:
https://doi.org/10.5380/atoz.v10i3.81966Keywords:
Big data, Artificial intelligence, Technological innovation, Data cube, Brazil Data CubeAbstract
Dr. Karine Reis Ferreira and Dr. Gilberto Ribeiro de Queiroz from Instituto Nacional de Pesquisas Espaciais (INPE) answers questions about big data technology and artificial intelligence, specialy in the context of contexto of Brazil Data Cube project.
References
Ferreira, K.R., Queiroz, G.R., Vinhas, L., Marujo, R.F.B., Simoes, R.E.O., Picoli, M.C.A., Camara, G., Cartaxo, R., Gomes, V.C.F., Santos, L.A. & et al. (2020a). Earth Observation Data Cubes for Brazil: Requirements, Methodology and Products. Remote Sensing. 2020,12, 4033, doi:10.3390/rs12244033
Ferreira, K. R., Queiroz, G. R., Camara G., Souza, R. C. M., Vinhas, L., Marujo, R. F. B., Simoes, R. E. O., Noronha, C. A. F., Costa, R. W. & et al. (2020b). Using Remote Sensing Images and Cloud Services on AWS to Improve Land Use and Cover Monitoring. In: LAGIRS 2020: 2020 Latin American GRSS & ISPRS Remote Sensing Conference. Santiago de Chile, Chile, March 22-26.
Giuliani, G., Chatenoux, B., De Bono, A., Rodila, D., Richard, J.P., Allenbach, K., Dao, H. & Peduzzi, P. (2017). Building an Earth Observations Data Cube: Lessons Learned from the SwissData Cube (SDC) on Generating Analysis Ready Data (ARD). Big Earth Data, 1, 100–117, doi:10.1080/20964471.2017.1398903.
Gomes, V.C., Queiroz, G.R. & Ferreira, K.R. (2020). An Overview of Platforms for Big Earth Observation DataManagement and Analysis. Remote Sensing, 12, 1253. doi: 10.3390/rs12081253.
Gomes, V. C. F., Carlos, F. M., Queiroz, G. R., Ferreira, K. R., & Santos, R. (2021). ACCESSING AND PROCESSING BRAZILIAN EARTH OBSERVATION DATA CUBES WITH THE OPEN DATA CUBE PLATFORM, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-4-2021, 153–159, doi: 10.5194/isprs-annals-V-4-2021-153-2021.
Killough, B. & et al. (2019) The Impact of Analysis Ready Data in the Africa Regional Data Cube. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 5646–5649, doi:10.1109/IGARSS.2019.8898321
Lewis, A., Oliver, S., Lymburner, L., Evans, B., Wyborn, L., Mueller, N., Raevksi, G., Hooke, J., Woodcock, R., Sixsmith, J. & et al. (2017). The Australian Geoscience Data Cube—Foundations and Lessons Learned. Remote Sens. Environ., 202, 276–292, doi:10.1016/j.rse.2017.03.015.13.
Picoli, M. C. A., Simoes, R., Chaves, M., Santos, L. A., Sanchez, A., Soares, A., Sanches, I. D., Ferreira, K. R. & Queiroz, G. R. (2020). CBERS DATA CUBE: A POWERFUL TECHNOLOGY FOR MAPPING AND MONITORING BRAZILIAN BIOMES. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. , v.V-3-2020, p.533 – 539, doi: 10.5194/isprs-annals-V-3-2020-533-2020
Santos, L.A., Ferreira, K.R., Camara, G., Picoli, M.C.A. & Simoes, R.E. (2021a). Quality Control and Class Noise Reduction of Satellite Image Time Series. ISPRS J. Photogramm. Remote Sens. 2021, 177, 75–88, doi:10.1016/j.isprsjprs.2021.04.014.
Santos, L.A., Ferreira, K.R, Picoli, M., Camara, G., Zurita-Milla, R. & Augustijn, E.-W. (2021b). Identifying Spatiotemporal Patterns in Land Use and Cover Samples from Satellite Image Time Series. In: Remote Sensing Journal. v. 13, p. 974, 2021. doi: 10.3390/rs13050974
Simoes, R., Camara, G., Queiroz, G., Souza, F., Andrade, P.R., Santos, L., Carvalho, A. & Ferreira, K. (2021). Satellite Image Time Series Analysis for Big Earth Observation Data. Remote Sensing. v.13, p.2428, doi: 10.3390/rs13132428.
Soille, P., Burger, A., De Marchi, D., Kempeneers, P., Rodriguez, D., Syrris, V. & Vasilev, V. (2018) A versatile data-intensive computing platform for information retrieval from big geospatial data. Future Generation Computer Systems, v. 81, p. 30–4, doi: 10.1016/j.future.2017.11.007.
Downloads
Published
How to Cite
Issue
Section
License
Atoz is a open access journal and the authors have permission and are encouraged to deposit their papers in personal web pages, institutional repositories or portals before (pre-print) or after (post-print) the publication at AtoZ. It is just asked, when and where possible, the mention, as a bibliographic reference (including the atributted URL), to the AtoZ Journal.
The authors license the AtoZ for the solely purpose of disseminate the published work (peer reviewed version/post-print) in aggregation, curation and indexing systems.
The AtoZ is a Diadorim/IBICT green academic journal.
All the journal content (including instructions, editorial policies and templates) - except where otherwise indicated - is under a Creative Commons Attribution 4.0 International, since October 2020.
When published by this journal, articles are free to share (copy and redistribute the material in any support or format for any purpose, even commercial) and adapt (remix, transform, and create from the material for any purpose , even if commercial). You must give appropriate credit , provide a link to the license, and indicate if changes were made
AtoZ does not apply any charges regarding manuscripts submission/processing and papers publication.
























