Evaluation of vulnerability to coastal erosion in a traditional amazonian community
DOI:
https://doi.org/10.5380/qeg.v16i1.98990Keywords:
Sea Level Rise, Amazonian Coastal Zone, Climate change, Coastal erosionAbstract
The Amazonian coastal zones are among the environments most susceptible to the impacts of climate change, exacerbated by increasing anthropogenic pressures. This study aimed to assess the vulnerability to coastal erosion of the community of Jubim, located on the eastern margin of Marajó Island, under two sea-level rise scenarios projected by the IPCC (RCP 2.6 and RCP 8.5). To this end, the Coastal Vulnerability Index (CVI) was applied in combination with shoreline change analysis using DSAS and land cover data. The results indicated that vulnerability is heterogeneous along the coastline. Under the RCP 2.6 scenario, intermediate conditions predominated, particularly in the northern and central sectors, while the southern sector remained more stable due to the presence of cliffs and abrasion platforms. Under the RCP 8.5 scenario, vulnerability was markedly intensified: the northern sector showed the highest indices, with shoreline retreat exceeding 180 m at critical points, and the central sector also displayed increased susceptibility, contrasting with the relative resilience of the southern sector. Overall, 30.3% of the coastline exhibited moderate vulnerability and 27.3% high vulnerability, indicating direct risks to agricultural and community-use areas near the northern sector. The integrated analysis further highlighted that agricultural expansion and urban occupation exacerbate vulnerability by compromising ecosystems such as mangroves, reducing natural resilience to sea-level rise. In conclusion, the CVI proves to be an effective tool for diagnosing and spatially mapping coastal vulnerability, providing valuable support for management and adaptation strategies in traditional Amazonian communities facing intensifying erosive processes and global climate change.
References
ALESHEIKH, A. A., GHORBANALI, A., NOURI, N. 2007. Coastline change detection using remote sensing. International Journal of Environmental Science and Technology, v. 4(1), p. 61-66.
ANTHONY, E. J., GRATIOT, N., PROISY, C., WELTJE, G. J. 2010. The Amazon-influenced muddy coast of South America: A review of mud-bank–shoreline interactions. Earth-Science Reviews, v. 103, p. 99-121.
BARROS, E. L., PINHEIRO, L. de S., GUERA, R. G. P., MOURA, F. J. M. de., PAULA, D. P. de., NETO, A. R. X., LEISNER, M. M., MORAIS, J. O. de. 2024. Shoreline Change and Coastal Erosion: An Analysis of Long and Short-Term Alterations and Mitigation Strategies on the Coast of Icapuí, Northeast Brazil. Revista Brasileira de Geomorfologia, [S. l.], v. 25, n. 4.
BHARADWAZ, G. S. V. S. A., PAL, I., MOZUMDER, C., AHMAD, M. M. 2025. Assessing dynamic coastal vulnerability to climate hazards: A geospatial approach in Kakinada District, Andhara Pradesh, India. Environmental and Sustainability Indicators, v. 26, n. 100622.
BOX, J.E., HUBBARD, A., BAHR, D.B., COLGAN, W.T., FETTWEIS, X., MANKOFF, K.D., WEHRLE, A., NOEL, B., VAN DEN BROEKE, M.R., WOUTERS, B., BJØRK, A.A., FAUSTO, R.S. 2022. Greenland ice sheet climate disequilibrium and committed sea-level rise. Nature Climate Change, v. 12, p. 808-813.
BRAGA, R. C., PIMENTEL, M. A. S., COELHO, C., SZLAFSZTEIN, C. F., ROLLNIC, M. 2019. Vulnerabilidade diante da ação energética do mar: Estudo de caso no município de Salinópolis, Zona Costeira Amazônica, Brasil. Journal of Integrated Coastal Zone Management, v. 19, n. 4, p. 245-264.
BRAND, E., MONTREUIL, A.L., HOUTHUYS, R., CHEN, M. 2020. Relating Hydrodynamic Forcing and Topographic Response for Tide-Dominated Sandy Beaches. Journal of Marine Science and Engineering. V. 8, n. 3, p. 151.
CAMPOS, A. O., FERNÁNDEZ, E., MARTÍNEZ, G. M. 2022. Land cover changes in the NW Spanish coastal zone: Drivers and impact on ecosystem services, Estudios Geográficos, v. 83, n 292, p. 100.
CHANDER, G., MARKHAM, B. L., HELDER, D. L. 2009. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893-903.
CONGEDO, L. 2021. Semi-Automatic Classification Plugin Documentation. Disponível em: https://semiautomaticclassificationmanual-v5.readthedocs.io/
DAL CIN, R., SIMENONI, U. 1994. A model for determining the Classification, Vulnerability and Risk in the Southern Coastal Zone of the March (Italy). Journal of Coastal Research, v. 10, n. 1, p. 18-29.
DWARAKISH, G. S., VINAY, S. A., NATESAN, U., ASANO, T., KAKINUMA, T., VENKATARAMANA, K., JAGADEESHA, P., BABITA, M. K. 2009. Coastal Vulnerability Assessment of the Future Sea Level in Udupi Coastal Zone of Karnataka State, West Coast of India. Ocean & Coastal Management, v. 52, p. 467-478.
EL-ROBRINI, M., RANIERI, L.A., SILVA, P.V.M., ALVES, M.A.M.S., GUERREIRO, J.S., OLIVEIRA, R.R.S., SILVA, M.S.F., AMORA, P.B.C., EL-ROBRINI, M.H.S., FENZL, N. 2018. Pará. In MUEHE, D. (Ed.). Panorama da erosão costeira no Brasil. Brasília: MMA. p. 65-166.
FOODY, G. M. 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185-201.
FRANÇA, C. F., SOUZA FILHO, P. W. M. 2003. Análise das mudanças morfológicas costeiras de médio período na margem leste da Ilha do Marajó (PA) em imagem LANDSAT. Revista Brasileira de Geociências, v. 33, p. 127-136.
FRANÇA, C. F., SOUZA FILHO, P. W. M. 2006. Compartimentação morfológica da margem leste da Ilha do Marajó: zona costeira dos municípios de Soure e Salvaterra – Estado do Pará. Revista Brasileira de Geomorfologia, Ano 7, n. 1, p. 33-42.
GASPARINETTI, P. 2018. The values of ecosystem services of Brazilian mangroves, economic instruments for their conservation and the case study of Salgado Paraense. Conservation Strategy Fund (CSF).
GORNITZ, V. M. 1991. Global coastal hazards from future sea level rise. Global and Planetary Change. v. 3, n. 4, p. 379-398.
GORNITZ, V. M., DANIELS, R. C., WHITE, T. W., BIRDWELL, K. R. 1994. The Development of Coastal Risk Assessment Database: Vulnerability to Sea-Level Rise in the U.S. Southeast. Journal of Coastal Research, n. 12, p. 327-338.
GOSLEE, S. C. 2011. Analyzing remote sensing data in R: the landsat package. Journal of Statistical Software, 43(1), 1-25.
HENRIQUES, R. J., OLIVEIRA, F. S., SCHAEFER, C. E. G. R., LOPES, P. R. C., SENRA, E. O., LOURENÇO, V. R., FRANCELINO, M. R. 2024. Impacts of anthropocene sea-level rise on people, environments, and archaeological sites in Marajó Island, Brazilian Amazonia. Journal of South American Earth Sciences, v. 136, 104836.
HERNANI, L. C., FREITAS, P. L., PRUSKI, F. F., DE MARIA, I. C., CASTRO FILHO, C., LANDERS, J. N. 2002. A erosão e seu impacto. Repositório de Informação da Embrapa, v. 5, p. 47-60.
IPCC. 2013. Summary for Policymarkes. In: Climate Change 2013: The Physical Science Basis. Contribuition of Working Group I to the Fifth Assessment Report of the Intergovernmental Painel on Climate Change, NY, USA.
IPCC. 2019. Technical Summary [H.-O. PÖRTNER, D.C. ROBERTS, V. MASSON-DELMOTTE, P. ZHAI, E. POLOCZANSKA, K. MINTENBECK, M. TIGNOR, A. ALEGRÍA, M. NICOLAI, A. OKEM, J. PETZOLD, B. RAMA, N.M. WEYER (eds.)]. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.- O. Pörtner, D.C. Roberts, V. Masson-Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, A. Alegría, M. Nicolai, A. Okem, J. Petzold, B. Rama, N.M. Weyer (eds.)]. Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 39–69.
JENSEN, J. R. 2015. Introductory Digital Image Processing: A Remote Sensing Perspective. 4th ed. Pearson.
KOROGLU, A., RANASINCHE, R., JIMÉNEZ, J. A., DASTGHEIB, A. 2019. Comparasion of Coastal Vulnerability Index Applications for Barcelona Province. Ocean and Coastal Management, v. 178, n. 104799, p. 1-14.
LIMA, A.M., OLIVEIRA, L.L., FONTINHAS, R.L., LIMA, R.J.S. 2005. Ilha do Marajó: Revisão Histórica, Climatológica, Bacias Hidrográficas e Propostas de Gestão. HOLOS Environment, v.5 n.1, p. 65.
LU, D., WENG, Q. 2007. A survey of image classification methods and techniques for improving classification performance. International Journal of Remote Sensing, 28(5), 823–870.
MAITI, S., BHATTACHARYA, A. 2009. Shoreline Change Analysis and Its Application to Prediction: A Remote Sensing and Statistics Based Approach. Marine Geology, v257, p. 11-23.
MAPBIOMAS. 2024. Algorithm Theoretical Basis Document (ATBD). MapBiomas General “Handbook”, v. 1, collection 9.
MARENGO, J. A., ALVES, L. M., ALVALÁ, R. C. S., CUNHA, A. P., BRITO, S., MORAES, O. L. L. 2018. Climatic characteristics of the 2010–2016 drought in the semiarid Northeast Brazil region. Anais da Academia Brasileira de Ciências, v. 90, supl. 1, p. 1973-1985.
MENEZES, R. A. A., GUIMARÃES, D. K. M., EL-ROBRINI, M. 2024. Variations of the coastline in a medium period (1985-2017) of a tropical island: the case of Soure (Marajó – Pará/Brazil). Boletim Paulista de Geografia, n. 112.
MISHRA, M., CHAND, PATTNAIK, N., KATTEL D. B., PANDA, G. K., MOHANTI, M., BARUAH, U. D., CHANDNIHA, S. K., ACHARY, S., MOHANTY, T. 2019. Response of long- to Short- term changes of the Puri Coastline of Odisha (India_ to natural and anthropogenic factors: a remote sensing and statistical assessment. Environmental Earth Sciences, v. 78, n. 338, p. 1-23.
MUEHE, D., FERNANDEZ, G. B., BULHÕES, E. M. R., AZEVEDO, I. F. 2011. Avaliação da Vulnerabilidade Física da Orla Costeira em Nível Local, Tomando como Exemplo o Arco Praial entre Rio das Ostras e o Cabo Búzios/RL. Revista Brasileira de Geomorfologia, v. 12, n. 2, p. 45-58.
MUZIRAFUTI, A. 2025. Assessing Coastal Vulnerability Index in Mediterranean Areas: A Case Study of Casablanca. Preprints.
NGUYEN, T. T. X., BONETTI, J., ROGERS, K., WOODROFFE, C. D. 2016. Indicator-based assessment of climate-change impacts on coasts: a review of concepts, methodological approaches and vulnerability indices. Ocean Coast Manag, v. 123, p. 18–43.
NICHOLLS, R. J., HANSON, S. E., LOWE, J. A., WARRICK, R. A., LU, X., LONG, A. J. 2014. Sea-level scenarios for evaluating coastal impacts. WIREs Clim Change [Online] 5.
NOAA. 2017. Administração Oceânica e Atmosférica Nacional. Trends in Atmospheric Carbon Dioxide.
NOVAES, G. de O., LOBO, F. C., RANIERI, L. A. 2024. Geoindicadores de vulnerabilidade à erosão e risco costeiro em praias estuarinas da costa amazônica. Revista Brasileira de Geomorfologia, v. 25, n. 2.
NOVAK, L. P., LAMOUR, M. R. 2021. Avaliação do Risco à Erosão Costeira em Praias Urbanizadas do Paraná. Revista Brasileira de Geomorfologia, v. 22, n. 1, p. 163-185.
OPPENHEIMER, M., GLAVOVIC, B. C., HINKEL, J., VAN DE WAL, R., MAGNAN, A. K., ABD- ELGAWAD, A., CAI, R., CIFUENTES-JARA, M., DECONTO, R. M., GHOSH, T., HAY, J., ISLA, F., MARZEION, B., MEYSSIGNAC, B., SEBESVARI, Z. 2022. Sea Level rise and implications for low-lying islands, coasts and communities. In: P¨ORTNER, H.-O., ROBERTS, D. C., MASSON- DELMOTTE, V., ZHAI, P., TIGNOR, M., POLOCZANSKA, E., MINTENBECK, K., ALEGRÍA, A., NICOLAI, M., OKEM, A., PETZOLD, J., RAMA, B., WEYER, N. M. (Eds.), IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Cambridge University Press, Cambridge, UK and New York, NY, USA, p. 321–445.
OSILIERI, P. P. G., SEOANE, J. C. S., DIAS, F. B. 2020. Coastal Vulnerability Index Revisited: A Case Study from Maricá, RJ, Brazil. Revista Brasileira de Cartografia, v. 72, n. 1, p. 81-99.
PENDLETON, E. A., BARRAS, J. A., WILLIAMS, S. J., TWICHELL, D. C. 2010. Coastal vulnerability assessment of the Northern Gulf of Mexico to sea-level rise and coastal change. Geological Survey Open-File Report, v. 2010-1146, p. 1-26.
PENDLETON, E. A., HAMMAR-KLOSE, E. S., THIELER, E. R., WILLIAMS, S. J. 2004. Coastal Vulnerability Assessment of Gulf Islands National Seashore (GUIS) to Sea-Level Rise. Geological Survey Open-File Report, v. 03-188, p. 1-18.
RANIERI, L. A., EL-ROBRINI, M. 2015. Evoluçãoda linha de costa de Salinópolis, Nordeste do Pará, Brasil. Pesquisas em Geociências, v. 42, n. 3, p. 207–226.
RANIERI, L.A., EL-ROBRINI, M. 2016. Condição oceanográfica, uso e ocupação da costa de Salinópolis (Setor Corvina – Atalaia), Nordeste do Pará, Brasil. Revista de Gestão Costeira Integrada, v.16, n. 2, p. 133-146.
RIAHI, K., GRUBLER, A., NAKICENOVIC, N. 2007. Scenarios of long-term socioeconomic and environmental development under climate stabilization. Technological Forecasting and Social Change, v. 74, n. 7, p. 887-935.
RICHARDS, J. A., JIA, X. 2006. Remote Sensing Digital Image Analysis. Springer.
SHARPLES, C., WATSON, C. 2025. An abrupt change in long-term shoreline behaviour at Roches Beach, Tasmania: An early response to comtemporary climate change-induced sea-level rise? Marine Geology, v. 480, 107475.
SHERMAN, D.J. Praias Dissipativas. Em: FINKL, C.W., MAKOWSKI, C. 2019. (eds) Enciclopédia de Ciência Costeira. Série Enciclopédia de Ciências da Terra. Springer, Cham.
SHORT, A. D., JACKSON, D. W. T. 2013. Beach morphodynamics. In: SHRODER, J. (ed.). Treatise on Geomorphology. San Diego: Academic Press. v. 10, p. 106–129.
SOUSA, M. B. P. de, RANIERI, L. A. 2023. Morfodinâmica de praias estuarinas da costa leste da Ilha do Marajó, Amazônia Oriental. Revista Brasileira De Geomorfologia, 24(3).
SOUZA FILHO, P. W. M. 2005. Costa de manguezais de macromaré da Amazônia: cenários morfológicos, mapeamento e quantificação de áreas usando dados de sensores remotos. Revista Brasileira de Geofísica, v. 23, n. 4, p. 427-435.
SOUZA FILHO, P. W. M., LINS-DE-BARROS, F. M., COHEN, M. C. L. 2009. The role of mangroves in coastal dynamics of the Amazon estuary. Journal of Coastal Research, v. 56, p. 393–397.
SOUZA, E. M. S., ANDRADE, M. M. N. 2024. Dinâmica da linha de costa na Zona Costeira Amazônica: estudo de caso na ilha de Atalaia (Salinópolis, PA). Revista Brasileira de Geografia Física, v. 17, n. 4, p. 2911-2929.
SPECIAL REPORT ON THE OCEAN AND CRYOSPHERE IN A CHANGING. 2019. Chapter 4: Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities. IPCC - SR Ocean and Cryosphere (SROCC), p. 1-169.
TANO, R. A., AMAN, A., KOUADIO, K. Y., TOUALY, E., ALI, K. E., ASSAMOI, P. 2016. Assessment of the Ivorian Coastal Vulnerability. Journal of Coastal Research, v. 32, n. 6, p. 1495-1503.
THIELER, E. R., HAMMAR-KLOSE, E. S. 1999. National Assessment of Coastal Vulnerability to Sea-Level Rise: Preliminary Results for the U.S. Gulf of Mexico Coast. U.S. Geological Survey Open-File Report, v. 00-179, p. 1-15.
UNITED NATIONS. 2017. Ocean Factsheet Package. Presented at the The Ocean Conference, New York, USA, p. 7.
VAN VUUREN, D.P., DEN ELZEN, M.G., LUCAS, P.L., EICKHOUT, B., STRENGERS, B.J., VAN RUIJVEN, B., VAN HOUDT, R. 2007. Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs. Climatic Change., v. 81, n. 2, p 119–159.
VAN VUUREN, D.P., EDMONDS, J., KAINUMA, M., RIAHI, K., THOMSON, A., HIBBARD, K., HURTT, G.C., KRAM, T., KREY, V., LAMARQUE, J.F., MASUI, T., MEINSHAUSEN, M., NAKICENOVIC, N., SMITH, S.J., ROSE, S.K. 2011. The representative concentration pathways: An overview. Climatic Change, [S. l.], v. 109, n. 1-2, p. 5.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Fabrício de Sousa Figueiredo, Mayara de Souza Rodrigues, Leilanhe Almeida Ranieri

This work is licensed under a Creative Commons Attribution 4.0 International License.
Quaternary Environmental Geosciences adopts the Creative Commons License, CC BY 4.0 Attribution Non-Commercial. Under this license, it is permitted to access, download, copy, print, share, reuse, and distribute the articles, for any porposes and with proper attribution, giving due credit to Quaternary Environmental Geosciences.
Copyrights are the exclusive property of the journal, transferred through the Copyright Transfer Statement signed by the authors.
