Vulnerabilidade de sistemas estuarinos aos efeitos das mudanças climáticas - uma análise bibliométrica
DOI:
https://doi.org/10.5380/abequa.v14i2.89558Palavras-chave:
Erosão costeira, inundação, sistemas costeiros abrigados, cientometria, revisão sistemática.Resumo
Estuários são feições costeiras localizadas na interface continente-oceano, apresentando características de ambos os compartimentos. Por estarem estabelecidos em áreas predominantemente planas, propícias à instalação de infraestruturas, historicamente têm sido submetidos a um alto grau de antropização. Isso potencializa a exposição da população residente em seu entorno aos efeitos de inundação e erosão (marinha e fluvial), sobretudo em um cenário de aumento da intensidade e frequência dos eventos extremos provocados pelas mudanças climáticas. Tendo-se isso em consideração, este artigo objetiva analisar a produção científica global relacionada à avaliação da vulnerabilidade de sistemas estuarinos à erosão e inundação, empregando indicadores bibliométricos. Foram avaliados, utilizando o pacote Bibliometrix para R e o software VOSviewer 63 documentos publicados entre os anos de 1992 e 2022 selecionados na base Scopus. Os resultados indicaram que a maior parte dos estudos foi publicada em revistas científicas revisadas por pares e que Reino Unido e Austrália foram os países com maior contribuição quantitativa na produção do conhecimento científico sobre o tema. Dos 249 autores identificados na amostra, apenas 17 publicaram dois ou mais artigos, sugerindo que há uma convergência da produção regular em poucos grupos de pesquisa. A análise também revelou que 40% das palavras-chave aplicadas pelos autores estão concentradas em cinco termos (Climate Change, Sea Level Rise, Vulnerability, Estuary e GIS). Por fim, pode-se afirmar que a revisão sistemática, através da aplicação de técnicas de análise bibliométrica, oferece uma abordagem eficaz para sintetizar a literatura qualificada disponível mundialmente A estratégia proposta apresenta grande potencial para a caracterização de um dado domínio temático, bem como para a identificação de tendências e lacunas para serem exploradas em pesquisas futuras.
Referências
ANSARI, M., FARZADKIA, M. 2022. Beach debris quantity and composition around the world: A bibliometric and systematic review. Marine Pollution Bulletin, v. 178, n. April, p. 1-15. https://doi.org/10.1016/j.marpolbul.2022.113637.
APPEANING ADDO, K., BREMPONG, E. K., JAYSON-QUASHIGAH, P. N. 2020. Assessment of the dynamics of the Volta river estuary shorelines in Ghana. Geoenvironmental Disasters, v. 7, n. 1, p. 1–11. https://doi.org/10.1186/s40677-020-00151-1
ARAÚJO, C. A. 2006 Bibliometria: evolução histórica e questões atuais. Em Questão, v. 12, n. 1, p. 11–32.
ARIA, M., CUCCURULLO, C. 2017. bibliometrix : An R-tool for comprehensive science mapping analysis. Journal of Informetrics, v. 11, n. 4, p. 959–975, nov. https://doi.org/10.1016/j.joi.2017.08.007.
BONETTI, J., WOODROFFE, C.D. 2017. Spatial analysis techniques and methodological approaches for coastal vulnerability assessment. In: Bartlett D, Celliers L (eds) Geoinformatics for marine and coastal management. CRC Press, Boca Raton, pp 367–395.
BORBOR-CORDOVA, M. J., GER, G., VALDIVIEZO-AJILA, A.A., ARIAS-HIDALGO, M., MATAMOROS, D., NOLIVOS, I., MENOSCAL-ALDAS, G., VALLE, F. PEZZOLI, A. CORNEJO-RODRIGUES, M. D.P., 2020. An operational framework for urban vulnerability to floods in the guayas estuary region: The duran case study. Sustainability (Switzerland), v. 12, n. 24, p. 1–23. https://doi.org/10.3390/su122410292.
CHAN, S. W., ADIB, S.K., SULAIMAN, N. NAZIR, U., AZAM, K. 2022. A systematic review of the flood vulnerability using geographic information system. Heliyon, v. 8, n. 3. https://doi.org/10.1016/j.heliyon.2022.e09075.
CUI, L., WANG, N., GE, Z. YUAN, L. ZHANG, L. 2014. Vulnerability assessment on the coastal wetlands in the Yangtze Estuary under sea-level rise. Chinese Journal of Applied Ecology, v. 25, n. 2, p. 553–561.
CUI, L., GE, Z., YUAN, L. ZHANG, L. 2015. Vulnerability assessment of the coastal wetlands in the Yangtze Estuary, China to sea-level rise. Estuarine, Coastal and Shelf Science, v. 156, n. 1, p. 42–51. http://dx.doi.org/10.1016/j.ecss.2014.06.015
DALMAS, F. B., OJEDA ZÚJAR, J., FRAILE-JURADO, P., PARANHOS FILHO, A.C., OLIVEIRA, A.O.G., SAAD, A.R., MACEDO, A.B. 2020. Modeling of a future scenario of potential sea level rise and consequences to land use in the Cananéia-iguape estuarine- lagoonal complex (Brazil). Pesquisas em Geociencias, v. 47, n. 1. https://doi.org/10.22456/1807-9806.101332.
DAWSON, R. J., HALL, J.W., BATES, P.D., NICHOLLS, R,.J., 2005. Quantified analysis of the probability of flooding in the Thames estuary under imaginable worst-case Sea Level Rise scenarios. International Journal of Water Resources Development, v. 21, n. 4, p. 577–591. https://doi.org/10.1080/07900620500258380.
EL-RAEY, M., FOUDA, Y., NASR, S. 1997. GIS assessment of the vulnerability of the Rosetta area, Egypt to impacts of sea rise. Environmental Monitoring and Assessment, v. 47, n. 1, p. 59–77. https://doi.org/10.1023/A:1005738302640.
ELIOT, I., FINLAYSON, C. M., WATERMAN, P. 1999. Predicted climate change, sea-level rise and wetland management in the Australian wet-dry tropics. Wetlands Ecology and Management, v. 7, n. 1–2, p. 63–81. https://doi.org/10.1023/A:1008477110382.
FU, H. Z., WALTMAN, L. 2022. A large-scale bibliometric analysis of global climate change research between 2001 and 2018. Climatic Change, v. 170, n. 3–4, p. 1–21. https://doi.org/10.1007/s10584-022-03324-z.
HARRISON, L. M., COULTHARD, T.M., ROBINS, P.E., LEWIS, M.J. 2022. Sensitivity of Estuaries to Compound Flooding. Estuaries and Coasts, v.45, n. 5, p. 1250–1269. https://doi.org/10.1007/s12237-021-00996-1.
HUGHES, P., BRUNDRIT, G. B. 1992. An index to assess South Africa’s vulnerability to sea-level rise. South African Journal of Science, v. 88, n. 6, p. 308–311, 1992.
IBGE – Instituto Brasileiro de Geografia e Estatística. Atlas Geográfico das Zonas Costeiras e Oceânicas do Brasil. 2011. Rio de Janeiro: IBGE, Diretoria de Geociências. 176p. ISBN 978-85-240-4219-5. Disponível em: http://www.geografia.seed.pr.gov.br/arquivos/File/destaques_2015/Atlas_zonas_costeiras_Brasil.pdf. Acesso em: 2 out. 2022.
IMANI, M., KUO, C-Y., CHEN, P-C., TSENG, K-H., KAO, H-C., LEE, C-M., LAN, W-H. 2021. Risk assessment of coastal flooding under different inundation situations in southwest of taiwan (Tainan city). Water (Switzerland), v. 13, n. 6, p. 1–21. https://doi.org/10.3390/w13060880
IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, pp. 3−32, doi:10.1017/9781009157896.001.
KIMMERER, W., WEAVER, M. J. 2013. Vulnerability of Estuaries to Climate Change. In: PIELKE, R. A. B. T.-C. V. (eds) Climate Vulnerability Understanding and Addressing Threats to Essential Resourses. Oxford: Academic Press. p. 271–292. https://doi.org/10.1016/B978-0-12-384703-4.00438-X.
LEAL, K. B., ROBAINA, L. E. DE S., DE LIMA, A. DE S. 2022. Coastal impacts of storm surges on a changing climate: a global bibliometric analysis. Natural Hazards, v. 114, n. 2, p. 1455–1476. https://doi.org/10.1007/s11069-022-05432-6.
LI, J., GOERLANDT, F., RENIERS, G. 2021. An overview of scientometric mapping for the safety science community: Methods, tools, and framework. Safety Science, v. 134, n. October 2020, p. 105093. https://doi.org/10.1016/j.ssci.2020.105093.
LIMA, C. O., BONETTI, J. 2020. Bibliometric analysis of the scientific production on coastal communities’ social vulnerability to climate change and to the impact of extreme events. Natural Hazards, v. 102, n. 3, p. 1589–1610. https://doi.org/10.1007/s11069-020-03974-1.
MINAR, M. H.; HOSSAIN, M. B.; SHAMSUDDIN, M. D. Climate change and coastal zone of Bangladesh: Vulnerability, resilience and adaptability. Middle East Journal of Scientific Research, v. 13, n. 1, p. 114–120, 2013.
MUEHE, D. Brazilian coastal vulnerability to climate change. Pan-American Journal of Aquatic Sciences, v. 5, n. 2, p. 1–11, 2010
MUSSI, C.S., BONETTI, J., SPERB, R.M., 2018. Coastal sensitivity and population exposure to sea level rise: a case study on Santa Catarina Island, Brazil. J. Coast Conserv. 22, 1117–1128. https://doi.org/10.1007/s11852-018-0619-8.
NATH, A., KOLEY, B., SARASWATI, S., RAY, B.C. 2021. Identification of the coastal hazard zone between the areas of Rasulpur and Subarnarekha estuary, east coast of India using multi-criteria evaluation method. Modeling Earth Systems and Environment, v. 7, n. 4, p. 2251–2265. https://doi.org/10.1007/s40808-020-00986-5.
NGUYE, T.T.X., BONETTI, J., ROGERS, K., WOODROFFE, C.D., 2016. Indicator-based assessment of climate-change impacts on coasts: a review of concepts, methodological approaches and vulnerability indices. Ocean Coast Manag. 123, 18–43. https://doi.org/10.1016/j.ocecoaman.2015.11.022.
NIANG, I., DANSOKHO, M., FAYE, S., GUEYE, K. NDIAYE, P. 2010. Impacts of climate change on the Senegalese coastal zones: Examples of the Cap Vert peninsula and Saloum estuary. Global and Planetary Change, v. 72, n. 4, p. 294–301. https://doi.org/10.1016/j.gloplacha.2010.01.005.
OLISAH, C., ADAMS, J. B. 2021. Analysing 70 years of research output on South African estuaries using bibliometric indicators. Estuarine, Coastal and Shelf Science, v. 252, n. November 2020, p. 107285. https://doi.org/10.1016/j.ecss.2021.107285.
OLIVER, T. S. N., ROGERS, K., CHAFER, C.J., WOODROFEE, C.D. 2012. Measuring, mapping and modelling: An integrated approach to the management of mangrove and saltmarsh in the Minnamurra River estuary, southeast Australia. Wetlands Ecology and Management, v. 20, n. 4, p. 353–371, 2012. https://doi.org/10.1007/s11273-012-9258-2.
OLIVEIRA, A. O., BONETTI, J. 2021. Dynamical descriptors of physical vulnerability to sea-level rise in sheltered coastal systems: a methodological framework. Estuarine, Coastal & Shelf Science, 249:1-13, 107118. https://doi.org/10.1016/j.ecss.2020.107118.
PERILLO, G. M. E. 1995. Definitions and Geomorphologic Classifications of Estuaries. In: Developments in Sedimentology. [s.l.] Elsevier, 1995. v. 53p. 17–47. https://doi.org/10.1016/S0070-4571(05)80022-6.
RILO, A., FREIRE, P. GUERREIRO, M. FORTUNATO, A.B., TABORDA, R. 2013. Estuarine margins vulnerability to floods for different sea level rise and human occupation scenarios. Journal of Coastal Research, v. 65, n. 65, p. 820–825. http://www.bioone.org/doi/10.2112/SI65-139.1.
RODRIGUES, C., GODOY VIERA, A. F. 2016. Estudos bibliométricos sobre a produção científica da temática Tecnologias de Informação e Comunicação em bibliotecas. InCID: Revista de Ciência da Informação e Documentação, v. 7, n. 1, p. 167. DOI: 10.11606/issn.2178-2075.v7i1p167-180.
ROGERS, K., WOODROFFE, C. D. 2016. Geomorphology as an indicator of the biophysical vulnerability of estuaries to coastal and flood hazards in a changing climate. Journal of Coastal Conservation, v. 20, n. 2, p. 127–144. http://dx.doi.org/10.1007/s11852-016-0424-1.
ROGERS, K., MOGENSEN, L. A., DAVIES, P., KELLEWAY, J., SAINTILAN, N., WITHYCOMBE, G. 2019. Impacts and adaptation options for estuarine vegetation in a large city. Landscape and Urban Planning, v. 182, n. September 2018, p. 1–11. https://doi.org/10.1016/j.landurbplan.2018.09.022.
SALEEM KHAN, A., RAMACHANDRAN, A., USHA, N., PUNITHA, S., SELVAM, V. 2012. Predicted impact of the sea-level rise at Vellar-Coleroon estuarine region of Tamil Nadu coast in India: Mainstreaming adaptation as a coastal zone management option. Ocean and Coastal Management, v. 69, p. 327–339. http://dx.doi.org/10.1016/j.ocecoaman.2012.08.005.
SCHERER, M. E. G., ASMUS, M. L. 2016. Ecosystem-Based Knowledge and Management as a tool for Integrated Coastal and Ocean Management: A Brazilian Initiative. Journal of Coastal Research, v. 75, n. sp1, p. 690–694, 3. https://doi.org/10.2112/SI75-138.1.
SILVEIRA, Y.G., BONETTI, J. 2019. Assessment of the physical vulnerability to erosion and flooding in a sheltered coastal sector: Florianópolis Bay, Brazil. J. Coast Conserv. 23, 303–314.https://doi.org/10.1007/s11852-018-0659-0.
SKOULIKARIS, C., MAKRIS, C., KATIRTZIDOU, M., BALTIKAS, V. KRESTENITIS, Y. 2021. Assessing the Vulnerability of a Deltaic Environment due to Climate Change Impact on Surface and Coastal Waters: The Case of Nestos River (Greece). Environmental Modeling and Assessment, v. 26, n. 4, p. 459–486. https://doi.org/10.1007/s10666-020-09746-2.
THAKARE, L. M., SHITOLE, T. A. 2021. Vulnerability assessment of the ratnagiri coast (Maharashtra, West Coast of India). Journal of Coastal Research, v. 37, n. 2, p. 421–432. https://doi.org/10.1080/19475705.2018.1470112.
TIAN, B., ZHANG, L., WANG, X., ZHOU, Y., ZHANG, W. 2010. Forecasting the effects of sea-level rise at Chongming Dongtan Nature Reserve in the Yangtze Delta, Shanghai, China. Ecological Engineering, v. 36, n. 10, p. 1383–1388. http://dx.doi.org/10.1016/j.ecoleng.2010.06.016.
TORRESAN, S., CRITTO, A., RIZZI, J., MARCOMINI, A. 2012. Assessment of coastal vulnerability to climate change hazards at the regional scale: The case study of the North Adriatic Sea. Natural Hazards and Earth System Science, v. 12, n. 7, p. 2347–2368. https://doi.org/10.5194/nhess-12-2347-2012.
VAN ECK, N. J., WALTMAN, L. 2022. Manual for VOSviewer Manual version 1.6.18. Disponível em: http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.18.pdf. Acessado em 10 setembro de 2022.
VIEIRA, L. R., VIEIRA, J.G., SILVA, I.M.d, BARBIERI, E., MORGADO, F. 2021. GIS Models for Vulnerability of Coastal Erosion Assessment in a Tropical Protected Area. ISPRS International Journal of Geo-Information, v. 10, n. 9, p. 598. https://doi.org/10.3390/ijgi10090598.
WHITE, H. D., MCCAIN, K. W. 1998. Visualizing a discipline: An author co-citation analysis of information science, 1972-1995. Journal of the American Society for Information Science, v. 49, n. 4, p. 327–355. https://doi.org/10.1002/(SICI)1097-4571(19980401)49:4<327::AID-ASI4>3.0.CO;2-4.
WOODROFFE, C. D., CARVALHO, R.C., OLIVER, T.S.N. THOM, B.G. 2022. Sediment dynamics at different timescales on an embayed coast in southeastern Australia. Journal of Coastal Conservation, v. 26, n. 3. https://doi.org/10.1007/s11852-022-00867-2.
ZUPIC, I.; ČATER, T. 2015. Bibliometric Methods in Management and Organization. Organizational Research Methods, v. 18, n. 3, p. 429–472. https://doi.org/10.1177/1094428114562629.
Publicado
Como Citar
Edição
Seção
Licença
A Quaternary Environmental Geosciences adota a Licença Creative Commons, CC BY 4.0 Atribuição não comercial. Com essa licença é permitido acessar, fazer download, copiar, imprimir, compartilhar, reutilizar e distribuir os artigos, para qualquer fim, com a citação da fonte, conferindo os devidos créditos autorais à Quaternary Envronmental Geosciences.
Os direitos autorais são de propriedade exclusiva da revista, transferidos por meio da Declaração de Transferência de Direitos Autorais assinada pelos autores.