GALERKIN FINITE ELEMENT METHOD AND FINITE DIFFERENCE METHOD FOR SOLVING CONVECTIVE NON-LINEAR EQUATION

Autores

  • E. C. Romão Universidade Federal de Itajubá
  • M. D. de Campos Universidade Estadual de Campinas
  • L. F. M. de Moura Universidade Estadual de Campinas

DOI:

https://doi.org/10.5380/reterm.v9i1-2.61935

Palavras-chave:

Numerical simulation, Burgers’ equation, Galerkin Finite Element Method, Finite Difference Method, Cranck-Nicolson Method

Resumo

The fast progress has been observed in the development of numerical and analytical techniques for solving convection-diffusion and fluid mechanics problems. Here, a numerical approach, based in Galerkin Finite Element Method with Finite Difference Method is presented for the solution of a class of non-linear transient convection-diffusion problems. Using the analytical solutions and the L2 and L∞ error norms, some applications is carried and valuated with the literature.

Downloads

Publicado

2010-12-31

Como Citar

Romão, E. C., de Campos, M. D., & de Moura, L. F. M. (2010). GALERKIN FINITE ELEMENT METHOD AND FINITE DIFFERENCE METHOD FOR SOLVING CONVECTIVE NON-LINEAR EQUATION. Revista Da Engenharia Térmica, 9(1-2), 69–73. https://doi.org/10.5380/reterm.v9i1-2.61935

Edição

Seção

Science