Open Journal Systems

ANALYSIS OF THE EFFECTS OF ATMOSPHERIC CORRECTION ON ORBITAL IMAGES FOR STUDIES IN INTERIOR WATER BODIES

Gabriella Correa Segedi, Rejane Ennes Cicerelli, Tati Almeida, Henrique Llacer Roig, Diogo Olivetti, José Vicente Elias Bernardi, Adriana Castreghini

Resumo


The water reservoirs, in addition to their significance in electricity generation, serve as vital resources for various other requirements of the population. Images from orbital sensors have been applied to complement the monitoring of these environments and thus overcome the deficiency of spatial and temporal coverage of traditional techniques. However, studies involving water quality are still a great challenge due to the low signal coming from the water body and the interference of external factors (or environmental factors). Image correction/improvement procedures are often proposed, mainly to reduce atmospheric interference. In this study the best available atmospheric correction techniques were evaluated in order to indicate the technique that most closely matches the spectral response of remotely sensed images obtained in the field. During the study six atmospheric correction algorithms were applied (FLAASH, Second simulation of a Satellite Signal in the Solar Spectrum (6S), L8SR, Aquatic Reflectance (NASA/USGS), ACOLITE and Sen2Cor) that, based on the statistical analysis of discriminant analysis and covariance, indicated the 6S for Landsat and Sentinel images and ACOLITE for Landsat images as the most accurate. Although 6S showed a response close to the reference data, low variability in spectral response was observed. For time series, ACOLITE showed better capacity to correct the data. The type of application is also a preponderant factor, since it was evident that the use of time series indicated a different atmospheric correction technique when compared to the analysis of the scenes individually.


Palavras-chave


Inland water bodies; Atmospheric correction; Landsat-8; Sentinel-2

Texto completo:

PDF (English)

Referências


ABDELAL, Q.; ASSAF, M. N.; AL-RAWABDEH, A.; ARABASI, S.; RAWASHDEH, N. A. Assessment of Sentinel-2 and Landsat-8 OLI for Small-Scale Inland Water Quality Modeling and Monitoring Based on Handheld Hyperspectral Ground Truthing. Journal of Sensors, v. 2022, p. 1–19, 2022.

ANDERSON, G. P.; FELDE, G. W.; HOKE, M. L.; et al. <title>MODTRAN4-based atmospheric correction algorithm: FLAASH (fast line-of-sight atmospheric analysis of spectral hypercubes)</title> In: S. S. Shen; P. E. Lewis (Orgs.); . p.65–71, 2002a.

BARBOSA, C. C.; GOMES, L. N. L.; MINOTI, R. T. A modelling approach to simulate Chlorophyta and Cyanobacteria biomasses based on historical data of a Brazilian urban reservoir. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, v. 16, n. 5, p. 1–11, 2021.

BATISTA, B. D.; FONSECA, B. M. Fitoplâncton da região central do Lago Paranoá (DF): uma abordagem ecológica e sanitária. Engenharia Sanitaria e Ambiental, v. 23, n. 2, p. 229–241, 2018.

BERNARDO, N.; WATANABE, F.; RODRIGUES, T.; ALCÂNTARA, E. Atmospheric correction issues for retrieving total suspended matter concentrations in inland waters using OLI/Landsat-8 image. Advances in Space Research, v. 59, n. 9, p. 2335–2348, 2017.

BERNSTEIN, L. S.; ADLER-GOLDEN, S. M.; SUNDBERG, R. L.; et al. Validation of the QUick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery. In: S. S. Shen; P. E. Lewis (Orgs.); . p.668, 2005.

BINDING, C. E.; STUMPF, R. P.; SHUCHMAN, R. A.; SAYERS, M. J. Advances in Remote Sensing of Great Lakes Algal Blooms. . p.217–232, 2020.

BORGES, H. D.; CICERELLI, R. E.; DE ALMEIDA, T.; ROIG, H. L.; OLIVETTI, D. Monitoring cyanobacteria occurrence in freshwater reservoirs using semi-analytical algorithms and orbital remote sensing. Marine and Freshwater Research, v. 71, n. 5, 2020.

CABALLERO, I.; ROMÁN, A.; TOVAR-SÁNCHEZ, A.; NAVARRO, G. Water quality monitoring with Sentinel-2 and Landsat-8 satellites during the 2021 volcanic eruption in La Palma (Canary Islands). Science of The Total Environment, v. 822, p. 153433, 2022.

CARVALHO, G. DE A.; MINNETT, P. J.; EBECKEN, N. F. F.; LANDAU, L. Classification of Oil Slicks and Look-Alike Slicks: A Linear Discriminant Analysis of Microwave, Infrared, and Optical Satellite Measurements. Remote Sensing, v. 12, n. 13, p. 2078, 2020.

COOLEY, T.; ANDERSON, G. P.; FELDE, G. W.; et al. FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. IEEE International Geoscience and Remote Sensing Symposium. Anais... . p.1414–1418. IEEE.

DEKKER, A. G.; PETERS, S. W. M. The use of the Thematic Mapper for the analysis of eutrophic lakes: a case study in the Netherlands. International Journal of Remote Sensing, v. 14, n. 5, p. 799–821, 1993.

DUBE, T.; MUTANGA, O.; SIBANDA, M.; BANGAMWABO, V.; SHOKO, C. Testing the detection and discrimination potential of the new Landsat 8 satellite data on the challenging water hyacinth ( Eichhornia crassipes ) in freshwater ecosystems. Applied Geography, v. 84, p. 11–22, 2017.

EUGENIO, F.; MARCELLO, J.; MARTÍN, J. Multiplatform Earth Observation Systems for Monitoring Water Quality in Vulnerable Inland Ecosystems: Maspalomas Water Lagoon. Remote Sensing, v. 12, n. 2, p. 284, 2020.

EUGENIO, F.; MARCELLO, J.; MARTIN, J.; RODRÍGUEZ-ESPARRAGÓN, D. Benthic Habitat Mapping Using Multispectral High-Resolution Imagery: Evaluation of Shallow Water Atmospheric Correction Techniques. Sensors, v. 17, n. 11, p. 2639, 2017.

GONZÁLEZ-MÁRQUEZ, L. C.; TORRES-BEJARANO, F. M.; TORREGROZA-ESPINOSA, A. C.; HANSEN-RODRÍGUEZ, I. R.; RODRÍGUEZ-GALLEGOS, H. B. Use of LANDSAT 8 images for depth and water quality assessment of El Guájaro reservoir, Colombia. Journal of South American Earth Sciences, v. 82, p. 231–238, 2018.

HARMEL, T.; CHAMI, M.; TORMOS, T.; REYNAUD, N.; DANIS, P.-A. Sunglint correction of the Multi-Spectral Instrument (MSI)-SENTINEL-2 imagery over inland and sea waters from SWIR bands. Remote Sensing of Environment, v. 204, p. 308–321, 2018.

DE KEUKELAERE, L.; STERCKX, S.; ADRIAENSEN, S.; et al. Atmospheric correction of Landsat-8/OLI and Sentinel-2/MSI data using iCOR algorithm: validation for coastal and inland waters. European Journal of Remote Sensing, v. 51, n. 1, p. 525–542, 2018.

KIRK, J. T. Light and photosynthesis in aquatic ecosystems. 1994.

KRAVCHENKO, A. N.; BOLLERO, G. A.; OMONODE, R. A.; BULLOCK, D. G. Quantitative Mapping of Soil Drainage Classes Using Topographical Data and Soil Electrical Conductivity. Soil Science Society of America Journal, v. 66, n. 1, p. 235–243, 2002.

MACIEL, D.; NOVO, E.; SANDER DE CARVALHO, L.; et al. Retrieving Total and Inorganic Suspended Sediments in Amazon Floodplain Lakes: A Multisensor Approach. Remote Sensing, v. 11, n. 15, p. 1744, 2019.

MACIEL, F. P.; PEDOCCHI, F. Evaluation of ACOLITE atmospheric correction methods for Landsat-8 and Sentinel-2 in the Río de la Plata turbid coastal waters. International Journal of Remote Sensing, v. 43, n. 1, p. 215–240, 2022.

MAIN-KNORN, M.; PFLUG, B.; LOUIS, J.; et al. Sen2Cor for Sentinel-2. In: L. Bruzzone; F. Bovolo; J. A. Benediktsson (Orgs.); Image and Signal Processing for Remote Sensing XXIII. Anais... . p.3, 2017. SPIE.

MÉLIN, F. Validation of ocean color remote sensing reflectance data: Analysis of results at European coastal sites. Remote Sensing of Environment, v. 280, p. 113153, 2022.

MOBLEY, C. D. Estimation of the remote-sensing reflectance from above-surface measurements. Applied Optics, v. 38, n. 36, p. 7442, 1999.

NANNI, M. R.; DEMATTÊ, J. A. M.; FIORIO, P. R. Análise discriminante dos solos por meio da resposta espectral no nível terrestre. Pesquisa Agropecuária Brasileira, v. 39, n. 10, p. 995–1006, 2004.

NYAMEKYE, C.; GHANSAH, B.; AGYAPONG, E.; KWOFIE, S. Mapping changes in artisanal and small-scale mining (ASM) landscape using machine and deep learning algorithms. - a proxy evaluation of the 2017 ban on ASM in Ghana. Environmental Challenges, v. 3, p. 100053, 2021.

OGASHAWARA, I.; JECHOW, A.; KIEL, C.; et al. Performance of the Landsat 8 Provisional Aquatic Reflectance Product for Inland Waters. Remote Sensing, v. 12, n. 15, p. 2410, 2020.

OLIVETTI, D.; ROIG, H.; MARTINEZ, J.-M.; et al. Low-Cost Unmanned Aerial Multispectral Imagery for Siltation Monitoring in Reservoirs. Remote Sensing, v. 12, n. 11, p. 1855, 2020.

PASSOS, M. C. DOS; RIBEIRO, F. P.; TEIXEIRA, T. M. DE A.; VALADÃO, M. B. X. Crise hídrica no Distrito Federal, Brasil: uma visão acadêmica. Research, Society and Development, v. 9, n. 11, p. e1139119518, 2020.

PEREIRA-SANDOVAL, M.; RUESCAS, A.; URREGO, P.; et al. Evaluation of Atmospheric Correction Algorithms over Spanish Inland Waters for Sentinel-2 Multi Spectral Imagery Data. Remote Sensing, v. 11, n. 12, p. 1469, 2019.

PISANTI, A.; MAGRÌ, S.; FERRANDO, I.; FEDERICI, B. SEA WATER TURBIDITY ANALYSIS FROM SENTINEL-2 IMAGES: ATMOSPHERIC CORRECTION AND BANDS CORRELATION. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, v. XLVIII-4/W1-2022, p. 371–378, 2022.

ROGER, J.-C.; VERMOTE, E.; SKAKUN, S.; et al. Aerosol models from the AERONET database: application to surface reflectance validation. Atmospheric Measurement Techniques, v. 15, n. 5, p. 1123–1144, 2022.

SAPATINAS, T. Discriminant Analysis and Statistical Pattern Recognition. Journal of the Royal Statistical Society Series A: Statistics in Society, v. 168, n. 3, p. 635–636, 2005.

STEINMETZ, F.; DESCHAMPS, P.-Y.; RAMON, D. Atmospheric correction in presence of sun glint: application to MERIS. Optics Express, v. 19, n. 10, p. 9783, 2011.

VANHELLEMONT, Q. Adaptation of the dark spectrum fitting atmospheric correction for aquatic applications of the Landsat and Sentinel-2 archives. Remote Sensing of Environment, v. 225, p. 175–192, 2019.

VANHELLEMONT, Q. Sensitivity analysis of the dark spectrum fitting atmospheric correction for metre- and decametre-scale satellite imagery using autonomous hyperspectral radiometry. Optics Express, v. 28, n. 20, p. 29948, 2020.

VANHELLEMONT, Q.; RUDDICK, K. Advantages of high quality SWIR bands for ocean colour processing: Examples from Landsat-8. Remote Sensing of Environment, v. 161, p. 89–106, 2015.

VERMOTE, E.; JUSTICE, C.; CLAVERIE, M.; FRANCH, B. Preliminary analysis of the performance of the Landsat 8/OLI land surface reflectance product. Remote Sensing of Environment, v. 185, p. 46–56, 2016.

WANG, D.; MA, R.; XUE, K.; LOISELLE, S. The Assessment of Landsat-8 OLI Atmospheric Correction Algorithms for Inland Waters. Remote Sensing, v. 11, n. 2, p. 169, 2019.

WANG, Z.; XIA, J.; WANG, L.; et al. Atmospheric Correction Methods for GF-1 WFV1 Data in Hazy Weather. Journal of the Indian Society of Remote Sensing, v. 46, n. 3, p. 355–366, 2018.

WARREN, M. A.; SIMIS, S. G. H.; MARTINEZ-VICENTE, V.; et al. Assessment of atmospheric correction algorithms for the Sentinel-2A MultiSpectral Imager over coastal and inland waters. Remote Sensing of Environment, v. 225, p. 267–289, 2019.

YANG, H.; KONG, J.; HU, H.; et al. A Review of Remote Sensing for Water Quality Retrieval: Progress and Challenges. Remote Sensing, v. 14, n. 8, p. 1770, 2022.




DOI: http://dx.doi.org/10.5380/raega.v58i0.93465