SENSITIVITY OF C-VV AND C-VH POLARIZATIONS FOR EDGE EXTRACTION BY MATHEMATICAL MORPHOLOGY IN A DEFORESTATION

Autores

DOI:

https://doi.org/10.5380/rf.v55i1.87597

Palavras-chave:

Mathematical Morphology, Amazon, SAR, Sentinel-1

Resumo

Tropical forests, like the Amazon, represent important reserves of biodiversity. However, processes such as deforestation have led to a reduction in vegetation cover. The objective of this study was to perform the extraction of edges, in a polygon of deforestation contained in a scene of the Sentinel Satellite 1, using the technique of Mathematical Morphology, in the Amazon rainforest, in the state of Mato Grosso, Brazil. The methodology was developed to obtain the external, internal and gradient edges of the shallow cut feature, by implementing arithmetic operations of dilation and erosion in the radar image in the VH and VV polarizations. Images from the Sentinel 2 satellite were used on the same acquisition date as the SAR images, spatially comparing the edges obtained by the VH and VV polarizations. As a result, the gradient border presented an outline with a smaller noise and spacing in relation to the external and internal borders. Areas where there were abrupt textural changes presented well-defined edges and without the presence of noise for the polarizations. On the other hand, in locations with greater signal variability, such as agricultural regions, edges characterized by dispersed segments and high noise distribution were observed. Even so, the edges generated by the polarizations did not present significant differences between them. However, the edges obtained from the VH polarization stood out for presenting a smaller difference and higher (R²) in relation to the reference product. This suggests that edge extraction based on cross-polarizations can be an accurate approach for analyzing disturbances in tropical forests, such as in deforestation monitoring.

Referências

ARÉVALO, P.; OLOFSSON, P.; WOODCOCK, C. E. Continuous monitoring of land change activities and post-disturbance dynamics from Landsat time series: a test methodology for REDD+ reporting. Remote Sensing of Environment, Amsterdam, v. 238, p. 111051, mar. 2020. DOI: 10.1016/j.rse.2019.01.013.

BALLÈRE, M.; BOUVET, A.; MERMOZ, S.; TOAN, T. L.; KOLECK, T.; BEDEAU, C.; ANDRÉ, M.; FORESTIER, E.; FRISON, P.; LARDEUX, C. SAR data for tropical forest disturbance alerts in French Guiana: benefit over optical imagery. Remote Sensing of Environment, [S.L.], v. 252, p. 112159-112165, jan. 2021. DOI.10.1016/j.rse.2020.112159.

BOUVET, S.; MERMOZ, M.; BALLRE, T.; T. LE TOAN, "Use of the SAR shadowing effect for deforestation detection with Sentinel-1 time series", Remote Sensing, [S.L.], v. 10, n. 8, 2018. DOI. 10.3390/rs10081250.

CARREIRAS, J. M. B.; QUEGAN, S.; TANSEY, K.; PAGE, S. Sentinel-1 observation frequency significantly increases burnt area detectability in tropical SE Asia. Environ. Res. Lett. [S.L.], v. 15, n. 05 p.4008.2020. DOI. 10.1088/1748-9326/ab7765.

DIAS, L. C. C.; OLIVEIRA-JUNIOR, N. D.; MOTA, J. S.; MONTEIRO, E. C. S.; AMARAL, S.; REGOLIN, A. L.; LUZ, N. B.; SOLER, L.; ALMEIDA, C. A. Assessing dominant production systems in the Eastern Amazon Forest. Forests, Basel, v. 16, n. 1, p. 89, 2025.

DRÜKE, M.; THONICKE, K. O fogo pode impedir a recuperação futura da floresta amazônica após o desmatamento em larga escala. Communications Earth & Environment, [s.l.], v. 4, p. 248, 2023.

ESA. EUROPEAN SPACE AGENCY. Sentinel-1 The European Space Agency. 2021. Disponível em: <https://sentinels.copernicus.eu/web/sentinel/missions/sentinel-1> . Acesso em: 17 abril de 2021.

FONSECA , C, R .; TAVARES JR., R. J.; CANDEIAS, B. L. A. Programação Python e índices físicos na detecção de bordas na Unidade de Conservação Parque Estadual Mata Da Pimenteira (Pernambuco). Revista Brasileira de Sensoriamento Remoto. [S.L.], v. 1, n. 2, 2020. ISSN: 2675-5491

GIGLIO, L.; BOSCHETTI, L.; ROY, D. P.; HUMBER, M. L.; JUSTICE, C. O.. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sensing of Environment, [S.L.], v. 217, p. 72-85, nov. 2018. DOI.10.1016/j.rse.2018.08.005.

GUISAO-BETANCUR, A.; DÉNIZ, L. G.; MARULANDA-TOBÓN, A. Forest/nonforest segmentation using Sentinel-1 and -2 data fusion in the Bajo Cauca Subregion in Colombia. Remote Sensing, Basel, v. 16, n. 1, p. 5, 2023.

HANSEN, J.N.; MITCHARD, E.T.A.; KING, S. Assessing Forest/Non-Forest Separability Using Sentinel-1 C-Band Synthetic Aperture Radar. Remote Sens. [S.L.], v.12, p.1899, 2020.

IBGE. Instituto Brasileiro de Geografia e Estatística (2004). Vegetation Map of Brazil. Disponível: < ibge.gov.br/en/geosciences/maps/state-maps/19470-brazilianvegetation.html?edicao=22013&t=acesso-ao-produto>

JIN, S.; LIU, Y.; FAGHERAZZI, S.; MI, H.; QIAO, G.; XU, W.; SUN, C.; LIU, Y.; ZHAO, B.; FICHOT, C. G.. River body extraction from sentinel-2A/B MSI images based on an adaptive multi-scale region growth method. Remote Sensing of Environment, [S.L.], v. 255, p. 112297, mar. 2021. DOI.10.1016/j.rse.2021.112297.

KAUFMAN, Y.J.; REMER, L. Remote sensing of vegetation in the mid-IR: The 3.75 μm channels. IEEE Geoscience and Remote Sensi ng Letters. [S.L.], v 32, p. 672-683, 1994 .

LIBONATI, R.; DACAMARA, C.C; SETZER, A.W.; MORELLI, F.; MELCHIORI, A.E. An Algorithm for Burned Area Detection in the Brazilian Cerrado Using 4 μm MODIS Imagery. Remote Sensing, [S.L.], v. 7, p.15782-15803, 2015. DOI. 10.3390/rs71115782

MCGREGOR, I. R.; CONNETTE, G.; GRAY, J. M. A multi-source change detection algorithm supporting user customization and near real-time deforestation detections. Remote Sensing of Environment, Amsterdam, v. 308, p. 114195, jul. 2024. DOI: 10.1016/j.rse.2024.114195.

PEREIRA, A. A.; TEIXEIRA, F. R.; LIBONATI, R.; MELCHIORI, E. A.; CARVALHO, L. M. T. Avaliação de índices espectrais para identificação De áreas queimadas no Cerrado utilizando dados Landsat TM. Revista Brasileira de Cartografia, [S.L.],v. 68, n. 8, out. 2016.

REICHE, J.; HAMUNYELA, E.; VERBESSELT, J.; HOEKMAN, D.; HEROLD, M. Improving near-real time deforestation monitoring in tropical dry forests by combining dense Sentinel-1 time series with Landsat and ALOS-2 PALSAR-2. Remote Sensing of Environment, [S.L.], v. 204, p. 147-161, jan. 2018. DOI.10.1016/j.rse.2017.10.034.

REED, I. S.; YU, X. "Adaptive Multiple-band CFAR Detection of an óptico pattern with unknown distribuição espectral," In: IEEE Transactions on Acoustics, Speech, and Signal Processing , 1990, Munique. Anais... IEEE, Munique, v. 38, n. 10, p. 1760-1770, outubro de 1990. DOI. 10.1109 / 29.60107.

SILVA, V. S.; SANO, E. E.; ALMEIDA, T. DE; MESQUITA JÚNIOR, H. N. DE. Discriminação de Classes de Cobertura Vegetal em uma Região de Transição Amazônia/Cerrado no Estado de Mato Grosso por meio de Imagens do Satélite ALOS-2/PALSAR-2. Revista Brasileira de Cartografia, [S.L.], v. 73, n. 1, p. 1-16, 18 fev. 2021.DOI. 10.14393/rbcv73n1-48516.

SILVA JUNIOR, Celso H. L.; PESSÔA, Ana C. M.; CARVALHO, Nathália S.; REIS, João B. C.; ANDERSON, Liana O.; ARAGÃO, Luiz E. O. C.. The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nature Ecology & Evolution, [S.L.], v. 5, n. 2, p. 144-145, 21 dez. 2020. Springer Science and Business Media LLC. http://dx.doi.org/10.1038/s41559-020-01368-x

SLAGTER, B.; FESENMYER, K.; HETHCOAT, M.; BELAIR, E.; ELLIS, P.; KLEINSCHROTH, F.; PEÑA-CLAROS, M.; HEROLD, M.; REICHE, J. Monitoring road development in Congo Basin forests with multi-sensor satellite imagery and deep learning. Remote Sensing of Environment, Amsterdam, v. 315, p. 114380, dez. 2024. DOI: 10.1016/j.rse.2024.114380.

SOUZA MENDES, F.; BARON, D.; GEROLD, G.; LIESENBERG, V.; ERASMI, S. Optical and SAR Remote Sensing Synergism for Mapping Vegetation Types in the Endangered Cerrado/Amazon Ecotone of Nova Mutum—Mato Grosso. Remote Sensing. [S.L.], v. 11, n. 10, p. 1161-1171, maio 2019. DOI. 10.3390/rs11101161.

YANG, H.; SONG, M.; SON, H.; KIM, R.; CHOI, E. Evaluating REDD+ readiness: high-potential countries based on MRV capacity. Forests, Basel, v. 16, n. 1, p. 67, 2025.

ZHANG, Y.; LING, F.; WANG, X.; FOODY, G. M.; BOYD, D. S.; LI, X.; DU, Y.; ATKINSON, P. M. Tracking small-scale tropical forest disturbances: fusing the Landsat and Sentinel-2 data record. Remote Sensing of Environment, Amsterdam, v. 261, p. 112470, ago. 2021.

Downloads

Publicado

11-02-2025

Como Citar

Antônio da Silva Júnior, J., Joaquim da Silva Junior, U., Vinícius Marley Santos Lima, F., & da Penha Pacheco, A. (2025). SENSITIVITY OF C-VV AND C-VH POLARIZATIONS FOR EDGE EXTRACTION BY MATHEMATICAL MORPHOLOGY IN A DEFORESTATION. FLORESTA, 55(1), e87597. https://doi.org/10.5380/rf.v55i1.87597

Edição

Seção

Artigos