USE OF QUANTILE REGRESSION AND RANSAC ALGORITHM IN FITTING VOLUME EQUATIONS UNDER THE INFLUENCE OF DISCREPANT DATA
DOI:
https://doi.org/10.5380/rf.v51i3.71410Palavras-chave:
Cerradão, influential data, leverage data, estimation methods.Resumo
The objective of this study was to evaluate three estimation methods to fit volume equations in the presence of influential or leverage data. To do so, data from the forest inventory carried out by the Centro Tecnológico de Minas Gerais Foundation were used to fit the Schumacher and Hall (1933) model in its nonlinear form for Cerradão forest, considering the quantile regression (QR), the RANSAC algorithm and the nonlinear Ordinary Least Squares (OLS) method. The correlation coefficient ( ) between the observed and estimated volumes, root-mean-square error (RMSE), as well as graphical analysis of the dispersion and distribution of the residuals were used as criteria to evaluate the performance of the methods. After the analysis, the nonlinear least squares method presented a slightly better result in terms of the goodness-of-fit statistics, however it altered the expected trend of the fitted curve due to the presence of influential data, which did not happen with the QR and the RANSAC algorithm, as these were more robust in the presence of discrepant data.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais para artigos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. Em virtude da aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.A revista, seguindo a recomendações do movimento Acesso Aberto, proporciona acesso publico a todo o seu conteudo, seguindo o principio de que tornar gratuito o acesso a pesquisas gera um maior intrcambio global de conhecimento.
Conteúdos do periódico licenciados sob uma Licença Creative Commons 4.0 Internacional (CC BY 4.0)