ABOVEGROUND BIOMASS ESTIMATION IN A TROPICAL FOREST WITH SELECTIVE LOGGING USING RANDOM FOREST AND LIDAR DATA
DOI:
https://doi.org/10.5380/rf.v50i4.66589Palavras-chave:
Amazon rainforest, remote sensing, machine learningResumo
The tropical forest is characterized by expressive biomass and stores high amounts of carbon, which is an important variable for climate monitoring. Thus, studies aiming to analyze suitable methods to predict biomass are crucial, especially in the tropics, where dense vegetation makes modeling difficult. Thus, the objective of the present study was to estimate aboveground biomass (AGB) in a tropical forest area with selective logging in the Amazon forest using the Random Forest (RF) machine learning algorithm and LiDAR data. For this, 85 sample units were used at Fazenda Cauaxi, in the municipality of Paragominas, Pará State. LiDAR data were collected in 2014 and made available by the Sustainable Landscapes Project. The software R was used for data analysis. Among the LiDAR metrics, the average height was used as it had the greatest significance to compose the model. The model presented a pseudo R² of 0.69 (value obtained by the RF), Spearman's Correlation Coefficient of 0.80, RMSE of 47.05 Mg.ha-1 (19.84%), and Bias of 2.06 Mg.ha-1 (0.87%). With the results, it was possible to infer that the average height metric was enough to estimate AGB in a tropical forest with selective logging, in addition, the RF algorithm the biomass to be estimated, which can be used to assist in monitoring and action management in areas of selective logging and serve as a basis for climate change mitigation policies.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais para artigos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. Em virtude da aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.A revista, seguindo a recomendações do movimento Acesso Aberto, proporciona acesso publico a todo o seu conteudo, seguindo o principio de que tornar gratuito o acesso a pesquisas gera um maior intrcambio global de conhecimento.
Conteúdos do periódico licenciados sob uma CC BY-NC-SA 4.0

