k-NEAREST NEIGHBOR AND LINEAR REGRESSION IN THE PREDICTION OF THE ARTIFICIAL FORM FACTOR

Autores

DOI:

https://doi.org/10.5380/rf.v50i3.65720

Palavras-chave:

Eucalyptus, machine learning, nearest neighbor, linear regression, form factor 0.7

Resumo

k-nearest neighbor and linear regression in the prediction of the artificial form factor. The proposal of this studywas to test whether the performance of the nonparametric approach k-NearestNeighbor (k-NN), would improve estimatesof individual artificial form factor (f1.3) oftrees of the hybrid Eucalyptus urophylla x Eucalyptus grandiscompared to the Ordinary Least Squares method.A total of149 sample-trees were selected, felled,and diameter was measured along the trunk at10% (d0.1), 30% (d0.3), 50% (d0.5) and 70% (d0.7) of commercial height and posteriorly at 2m intervals. Mathematical models recognized in the literature for predicting the form factor were adjustedfor comparison. The hyperparameter k of optimum adjustment for the k-NN estimator was obtained by repeated cross-validation. The training data of the k-NN regression model were identical to those used in the adjustment of the linear regression models since most multiple linear regression models present problems of collinearity or multicollinearity. The use of the covariate(d0.3.d0.7)/d1.32 and k = 15 made it possible to construct k-NN models with better generalization capacity. The potential of the k-NN estimator to predict the artificial form factor and thus to obtain less biased estimates of individual tree volumes was demonstratedand considered to be superior to the use of linear regression and average form factors. The k-NN approach can be considered more genericforprediction of the tree form factor,and its useis recommended when classical linear regression models or other simpler methods do not yieldgood results.

Biografia do Autor

Deivison Venicio Souza, Universidade Federal do Pará

É graduado em Engenharia Florestal pela Universidade Federal Rural da Amazônia (2008), possui Mestrado em Ciências Florestais pela Universidade Federal Rural da Amazônia - UFRA (2011). Atualmente é Professor Adjunto I da Universidade Federal do Pará. Tem experiência na área de Recursos Florestais e Engenharia Florestal, com ênfase em Manejo e Silvicultura de Florestas Naturais, Inventário Florestal, Dendrometria e Experimentação Florestal. É doutorando do Programa de Pós-Graduação em Engenharia Florestal da UFPR, contribuindo com o grupo de pesquisa do Centro de Excelência em Pesquisas sobre Fixação Carbono na Biomassa - BIOFIX.

Downloads

Publicado

10-07-2020

Como Citar

Souza, D. V., Nievola, J. C., Corte, A. P. D., & Sanquetta, C. R. (2020). k-NEAREST NEIGHBOR AND LINEAR REGRESSION IN THE PREDICTION OF THE ARTIFICIAL FORM FACTOR. Floresta, 50(3), 1669–1678. https://doi.org/10.5380/rf.v50i3.65720

Edição

Seção

Artigos