LAND USE/ COVER (LULC) MAPPING IN BRAZILIAN CERRADO USING NEURAL NETWORK WITH SENTINEL-2 DATA
DOI:
https://doi.org/10.5380/rf.v50i3.59747Palavras-chave:
Sensoriamento Remoto, Técnicas de Classificação supervisionada, Classes de uso e cobertura da terraResumo
The Sentinel-2a and 2B satellites form a multispectral imaging mission for Earth observation. They have promising characteristics for the study of soils and vegetation cover, and their data can be applied for land use/cover (LULC) mapping. To this end, neural networks have shown good results in pattern recognition tasks in orbital images. In this sense, the study aimed to evaluate the use of Sentinel 2 (ESA) image for LULC mapping in the Cerrado Biome, through the application of artificial neural network methodology. Among the classes of use and occupation examined, 8 classes were selected, 4 of which were natural (water bodies, savanna, forest and field formation) and 4 anthropic (Pasture, Urban areas, Silviculture and Seasonal Crop). The classification system by artificial neural network (ANN) was considered successful, with thematic accuracy (Kappa coefficient) of 0.77. Although there are still some thematic confusions during the classification process, the classification results were considered superior when compared to the MaxVer classifier. The Sentinel-2 image, together with the use of a neural network, was shown a good input for carrying out this type of mapping.
Key words: Orbital Remote Sensing System, Supervised Classification Techniques, LULC classes.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Direitos Autorais para artigos publicados nesta revista são do autor, com direitos de primeira publicação para a revista. Em virtude da aparecerem nesta revista de acesso público, os artigos são de uso gratuito, com atribuições próprias, em aplicações educacionais e não-comerciais.A revista, seguindo a recomendações do movimento Acesso Aberto, proporciona acesso publico a todo o seu conteudo, seguindo o principio de que tornar gratuito o acesso a pesquisas gera um maior intrcambio global de conhecimento.
Conteúdos do periódico licenciados sob uma Licença Creative Commons 4.0 Internacional (CC BY 4.0)