A JOINT EFFORT OF SPEEDED-UP ROBUST FEATURES ALGORITHM AND A DISPARITY-BASED MODEL FOR 3D INDOOR MAPPING USING RGB-D DATA
Keywords:
RGB-D data, SURF algorithm, Disparity-to-plane model, Loop closure, Graph optimization.Abstract
In this paper, we present a method for 3D mapping of indoor environments using RGB-D data. The contribution of our proposed method is two-fold. First, our method exploits a joint effort of the speed-up robust features (SURF) algorithm and a disparity-to-plane model for a coarse-to-fine registration procedure. Once the coarse-to-fine registration task accumulates errors, the same features can appear in two different locations of the map. This is known as the loop closure problem. Then, the variance-covariance matrix that describes the uncertainty of transformation parameters (3D rotation and 3D translation) for view-based loop closure detection followed by a graph-based optimization are proposed to achieve a 3D consistent indoor map. To demonstrate and evaluate the effectiveness of the proposed method, experimental datasets obtained in three indoor environments with different levels of details are used. The experimental results shown that the proposed framework can create 3D indoor maps with an error of 11,97 cm into object space that corresponds to a positional imprecision around 1,5% at the distance of 9 m travelled by sensor.
Downloads
Published
How to Cite
Issue
Section
License
Submission of an original manuscript to the Journal will be taken to mean that it represents original work not previously published, that is not being considered elsewhere for publication.
The BCG allows the author(s) to hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
The BCG also allows the authors to retain publishing rights without restrictions.
