ON THE PERFORMANCE OF GNSS LEVELLING OVER STEEP SLOPES
Main Article Content
Abstract
In geodetic applications variety, one of the main current focuses is recently to determine the heights of ground stations with high accuracy. Specially the possibility of acquiring 3D information of the point positioning with high accuracy is opening up new strategies of investigating the heighting. Global Navigation Satellite System (GNSS) for 3D positioning is undergoing rapid developments andGNSS heighting can be an alternative to terrestrial techniques of height measurements. This paper presents a research study on the use of GNSS heighting in the case of steep slopes and multipath issue. Short baseline solution strategieswere performed by using Bernese Software v. 5.0. The analysis results are also compared to the results of techniques of the terrestrial levelling. The results showthat GNSS can be used as an practical surveying method to the terrestrial levelling with comparable accuracies. Furthermore, one can save up to 1 hour using GNSSinstead of geometric levelling over a steep slope of a 100 m. On the other hand, as usual multipath is the primary error source decreasing the efficiency of GNSS, and it has been studied experimentally in this paper.
Article Details
How to Cite
ERENOGLU, R. C., YUCEL, M. A., PIRTI, A., & SANLI, D. U. (2012). ON THE PERFORMANCE OF GNSS LEVELLING OVER STEEP SLOPES. Bulletin of Geodetic Sciences, 18(4). https://doi.org/10.5380/bcg.v18i4.30265
Issue
Section
Communications
Submission of an original manuscript to the Journal will be taken to mean that it represents original work not previously published, that is not being considered elsewhere for publication.
The BCG allows the author(s) to hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
The BCG also allows the authors to retain publishing rights without restrictions.