IDENTIFICAÇÃO DE ÁREAS PRIORITÁRIAS PARA RECUPERAÇÃO FLORESTAL COM O USO DE REDE NEURAL DE MAPAS AUTO-ORGANIZÁVEIS
DOI:
https://doi.org/10.5380/bcg.v17i3.24597Keywords:
Redes Neurais Não-Supervisionadas, Recuperação Florestal, Reconhecimento de Padrões Espaciais, Bacia HidrográficaAbstract
O objetivo deste trabalho foi identificar áreas prioritárias para a recuperação florestal e analisar variáveis a elas relacionadas através da rede neural artificial (RNA) de Mapas Auto-Organizáveis (SOM), em duas escalas. Primeiramente,
procurou-se identificar uma sub-bacia hidrográfica prioritária para a recuperação florestal na Unidade de Gerenciamento de Recursos Hídricos Paulista (UGRHI) do rio Paraíba do Sul por SOM. Para isto, foram utilizadas variáveis de conectividade
ambiental e cobertura florestal. Definiu-se uma sub-bacia hidrográfica situada na represa do Jaguari, município de Igaratá, para estudo em uma escala de maior detalhe. Nas Áreas de Proteção Permanentes (APPs) englobadas nesta sub-bacia hidrográfica, foi realizada uma nova análise por SOM. Neste caso, foram consideradas variáveis de distância a fragmentos florestais, a áreas urbanas, a estradas pavimentadas e a construções rurais, assim como o Índice de Vegetação por Diferença Normalizada e o Potencial Natural de Erodibilidade Laminar. Em ambas as escalas, as áreas prioritárias para a recuperação florestal foram determinadas através de histogramas do somatório dos valores dos Mapas Auto-Organizáveis de cada variável por agrupamentos delimitados. Por fim, foi gerado um mapa de contribuição de amostras para neurônios vencedores, o que permitiu uma nova
abordagem para a análise dos agrupamentos gerados.
Downloads
Published
How to Cite
Issue
Section
License
Submission of an original manuscript to the Journal will be taken to mean that it represents original work not previously published, that is not being considered elsewhere for publication.
The BCG allows the author(s) to hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
The BCG also allows the authors to retain publishing rights without restrictions.
