O impacto de vários fatores na qualidade de parâmetrtos neutrosféricos de estação a partir do processamento de dados gnss
DOI:
https://doi.org/10.5380/bcg.v14i4.13231Abstract
Propagation delays of the signals of global navigation satellite systems (GNSS) caused by the neutral atmosphere are an important accuracy-limiting factor for precise geodetic applications. A common approach to handle the neutrospheric delay is to estimate so-called site-specific neutrospheric parameters (SSNP) within GNSS data processing which are then combined with the predicted model values calculated primarily based on meteorological data. Therefore, the quality of the determined neutrospheric delay depends not only on the factors impacting the GNSS signals but also on data processing strategies. In this paper, the influence of the factors impacting neutrospheric modelling such as baseline length, multipath, observation weighting, ambiguity resolution, and neutrospheric prediction models are analysed and quantified based on the standard deviations of the estimated SSNP. Additionally, an improved observation weighting scheme based on signal-to-noise power ratio measurements is briefly described. Test results indicate that applying this advanced weight model within GNSS data processing, including observations at low elevation, the standard deviation of the estimated SSNP can be improved by nearly 25% compared with the standard elevation-dependent weighting model.
Downloads
How to Cite
Issue
Section
License
Submission of an original manuscript to the Journal will be taken to mean that it represents original work not previously published, that is not being considered elsewhere for publication.
The BCG allows the author(s) to hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
The BCG also allows the authors to retain publishing rights without restrictions.
