Design and development of a mobile application for the classification of Chilean native flora using convolutional neural networks

Authors

DOI:

https://doi.org/10.5380/atoz.v11i0.81419

Keywords:

Computer vision, Convolutional Neural Network, Chilean flora, Mobile apps.

Abstract

Introduction: Mobile apps, through artificial vision, are capable of recognizing vegetable species in real time. However, the existing species recognition apps do not take in consideration the wide variety of endemic and native (Chilean) species, which leads to wrong species predictions. This study introduces the development of a chilean species dataset and an optimized classification model implemented to a mobile app. Method: the data set was built by putting together pictures of several species captured on the field and by selecting some pictures available from other datasets available online. Convolutional neural networks were used in order to develop the images prediction models. The networks were trained by performing a sensitivity analysis, validating with k-fold cross validation and performing tests with different hyper-parameters, optimizers, convolutional layers, and learning rates in order to identify and choose the best models and then put them together in one classification model. Results: The final data set was compounded by 46 species, including native species, endemic and exotic from Chile, with 6120 training pictures and 655 testing pictures. The best models were implemented on a mobile app, obtaining a 95% correct prediction rate with respect to the set of tests. Conclusion: The app developed in this study is capable of classifying species with a high level of accuracy, depending on the state of the art of the artificial vision and it can also show relevant information related to the classified species.

Author Biography

Alfredo Bolt, Universidad Finis Terrae

Profesor Asistente

References

Affouard, A., Goëau, H., Bonnet, P., Lombardo, J-C., & Joly, A. (2017). Pl@ntNet app in the era of deep learning. ICLR: International Conference on Learning Representations, Toulon, France. hal-01629195f.

Alvarado A., Baldini A. & Guajardo F. (2013). Árboles urbanos de Chile, CONAF. Recuperado de https://www.conaf.cl/cms/editorweb/institucional/Arboles_urbanos_de_Chile-2da_edicion.pdf

Bilyk, Z. I., Shapovalov, Y. B., Shapovalov, V. B., Megalinska, A., Andruszkiewicz, F., & Dolhanczuk-Sródka, A. (2020). Assessment of mobile phone applications feasibility on plant recognition: comparison with Google Lens AR-app. AREdu. Recuperado de http://ceur-ws.org/Vol-2731/paper02.pdf

Bravo-Vargas, V., García, R. A., Pizarro, J. C., & Pauchard, A. (2019). Do people care about pine invasions? Visitor perceptions and willingness to pay for pine control in a protected area. Journal of Environmental Management, 229, 57-66. doi: 10.1016/j.jenvman.2018.07.018

Cawin, C. (2021). Model compression with TensorFlow Lite: a look into reducing model size. Towards Data Science. Recuperado de https://towardsdatascience.com/model-compression-a-look-into-reducing-model-size-8251683c338e

Celis-Diez, J. L., Díaz-Forestier, J., Márquez-García, M., Lazzarino, S., Rozzi, R., & Armesto, J. (2016). Biodiversity knowledge loss in children's books and textbooks. Frontiers in Ecology and the Environment, 14(8), 408-410. doi: 10.1002/fee.1324

Cervantes, J., Taltempa, J., García-Lamont, F., Castilla, J. S. R., Rendón, A. Y., & Jalili, L. D. (2017). Análisis Comparativo de las técnicas utilizadas en un Sistema de Reconocimiento de Hojas de Planta. Revista Iberoamericana de Automática e Informática Industrial, 14(1), 104-114. doi: 10.1016/j.riai.2016.09.005

CONAF (2017). Bosques en Chile. Recuperado de https://www.conaf.cl/nuestros-bosques/bosques-en-chile/

Deng, J., Dong, W., Socher, R., Li, L., Li, K., & Fei-Fei, L. (2009, June). ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248-255. doi: 10.1109/CVPR.2009.5206848

García, N., & Ormazabal, C. (2008). Árboles nativos de Chile. Santiago, Chile: ENERSIS. Recuperado de http://bibliotecadigital.ciren.cl/handle/123456789/26302

Geron, A. (2019). Hands-on machine learning with scikit-learn, keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems (2a ed.). Sebastopol, CA: O’Reilly Media.

Glority LLC. (2020). PictureThis (3.0.3) [Aplicación móvil]. Google Play. Recuperado de https://play.google.com/store/apps/details?id=cn.danatech.xingseus&hl=es_CL&gl=US

Goëau, H., Bonnet, P., & Joly, A. (2017). Plant Identification Based on Noisy Web Data: the Amazing Performance of Deep Learning (LifeCLEF 2017). CLEF. Recuperado de http://ceur-ws.org/Vol-1866/invited_paper_9.pdf

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. ArXiv. doi: abs/1704.04861

Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160(1), 106-154. doi: 10.1113/jphysiol.1962.sp006837

ImageCLEF. (2017). PlantCLEF 2017 [Plataforma de crowdsourcing]. Recuperado de https://www.imageclef.org/lifeclef/2017/plant

iNaturalist. (2021). Chile País: plantas. Recuperado de https://www.inaturalist.org/places/chile#taxon=47126

Kaggle. (2021). Plants [Dataset]. Recuperado de https://www.kaggle.com/tags/plants

Lasseck, M. (2017). Image-based Plant Species Identification with Deep Convolutional Neural Networks. CLEF. Recuperado de http://ceur-ws.org/Vol-1866/paper_174.pdf

Muñoz, I. (2020a). Recorte-redimension. GitHub. Recuperado de https://github.com/Yayosawa/recorteredimension

Muñoz, I. (2020b). Árboles de Chile, Versión 4. Recuperado de https://www.kaggle.com/yayosawa123/arbolesenchile/settings

Muñoz, I. (2020c). Nativonet. GitHub. Recuperado de https://github.com/Yayosawa/nativonet

OMG. (2017). Unified Modeling Language Specification [Software]. Recuperado de https://www.omg.org/spec/UML/

Pham, H., Dai, Z., Xie, Q., Luong, M-T, & Le, Q. V. (2020). Meta Pseudo Labels. ArXiv. doi: abs/2003.10580

PictureThis (n.d.). PictureThis Identificar Planta. [Aplicativo]. Recuperado de https://play.google.com/store/apps/details?id=cn.danatech.xingseus&hl=es_CL&gl=US

TensorFlow. (2020). Cuantización posterior al entrenamiento. Recuperado de https://www.tensorflow.org/lite/performance/post_training_quantization?hl=es-419

TensorFlow. (2021). Folha_de_planta. [Datasets]. Recuperado de https://www.tensorflow.org/datasets/catalog/plant_leaves

Rodríguez, G., & Rodríguez, R. (1981). Las especies de Pinaceae cultivadas en Chile. Bosque, 4(1), 25-43. doi:10.4206/bosque.1981.v4n1-03

Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., & Chen, L. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4510-4520.

Published

2022-01-22

How to Cite

Muñoz Villalobos, I. A., & Bolt, A. (2022). Design and development of a mobile application for the classification of Chilean native flora using convolutional neural networks. AtoZ: Novas práticas Em informação E Conhecimento, 11, 1–13. https://doi.org/10.5380/atoz.v11i0.81419

Issue

Section

Papers