Design and development of a mobile application for the classification of Chilean native flora using convolutional neural networks
DOI:
https://doi.org/10.5380/atoz.v11i0.81419Keywords:
Computer vision, Convolutional Neural Network, Chilean flora, Mobile apps.Abstract
Introduction: Mobile apps, through artificial vision, are capable of recognizing vegetable species in real time. However, the existing species recognition apps do not take in consideration the wide variety of endemic and native (Chilean) species, which leads to wrong species predictions. This study introduces the development of a chilean species dataset and an optimized classification model implemented to a mobile app. Method: the data set was built by putting together pictures of several species captured on the field and by selecting some pictures available from other datasets available online. Convolutional neural networks were used in order to develop the images prediction models. The networks were trained by performing a sensitivity analysis, validating with k-fold cross validation and performing tests with different hyper-parameters, optimizers, convolutional layers, and learning rates in order to identify and choose the best models and then put them together in one classification model. Results: The final data set was compounded by 46 species, including native species, endemic and exotic from Chile, with 6120 training pictures and 655 testing pictures. The best models were implemented on a mobile app, obtaining a 95% correct prediction rate with respect to the set of tests. Conclusion: The app developed in this study is capable of classifying species with a high level of accuracy, depending on the state of the art of the artificial vision and it can also show relevant information related to the classified species.
References
Affouard, A., Goëau, H., Bonnet, P., Lombardo, J-C., & Joly, A. (2017). Pl@ntNet app in the era of deep learning. ICLR: International Conference on Learning Representations, Toulon, France. hal-01629195f.
Alvarado A., Baldini A. & Guajardo F. (2013). Árboles urbanos de Chile, CONAF. Recuperado de https://www.conaf.cl/cms/editorweb/institucional/Arboles_urbanos_de_Chile-2da_edicion.pdf
Bilyk, Z. I., Shapovalov, Y. B., Shapovalov, V. B., Megalinska, A., Andruszkiewicz, F., & Dolhanczuk-Sródka, A. (2020). Assessment of mobile phone applications feasibility on plant recognition: comparison with Google Lens AR-app. AREdu. Recuperado de http://ceur-ws.org/Vol-2731/paper02.pdf
Bravo-Vargas, V., García, R. A., Pizarro, J. C., & Pauchard, A. (2019). Do people care about pine invasions? Visitor perceptions and willingness to pay for pine control in a protected area. Journal of Environmental Management, 229, 57-66. doi: 10.1016/j.jenvman.2018.07.018
Cawin, C. (2021). Model compression with TensorFlow Lite: a look into reducing model size. Towards Data Science. Recuperado de https://towardsdatascience.com/model-compression-a-look-into-reducing-model-size-8251683c338e
Celis-Diez, J. L., Díaz-Forestier, J., Márquez-García, M., Lazzarino, S., Rozzi, R., & Armesto, J. (2016). Biodiversity knowledge loss in children's books and textbooks. Frontiers in Ecology and the Environment, 14(8), 408-410. doi: 10.1002/fee.1324
Cervantes, J., Taltempa, J., García-Lamont, F., Castilla, J. S. R., Rendón, A. Y., & Jalili, L. D. (2017). Análisis Comparativo de las técnicas utilizadas en un Sistema de Reconocimiento de Hojas de Planta. Revista Iberoamericana de Automática e Informática Industrial, 14(1), 104-114. doi: 10.1016/j.riai.2016.09.005
CONAF (2017). Bosques en Chile. Recuperado de https://www.conaf.cl/nuestros-bosques/bosques-en-chile/
Deng, J., Dong, W., Socher, R., Li, L., Li, K., & Fei-Fei, L. (2009, June). ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248-255. doi: 10.1109/CVPR.2009.5206848
García, N., & Ormazabal, C. (2008). Árboles nativos de Chile. Santiago, Chile: ENERSIS. Recuperado de http://bibliotecadigital.ciren.cl/handle/123456789/26302
Geron, A. (2019). Hands-on machine learning with scikit-learn, keras, and TensorFlow: Concepts, tools, and techniques to build intelligent systems (2a ed.). Sebastopol, CA: O’Reilly Media.
Glority LLC. (2020). PictureThis (3.0.3) [Aplicación móvil]. Google Play. Recuperado de https://play.google.com/store/apps/details?id=cn.danatech.xingseus&hl=es_CL&gl=US
Goëau, H., Bonnet, P., & Joly, A. (2017). Plant Identification Based on Noisy Web Data: the Amazing Performance of Deep Learning (LifeCLEF 2017). CLEF. Recuperado de http://ceur-ws.org/Vol-1866/invited_paper_9.pdf
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. ArXiv. doi: abs/1704.04861
Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160(1), 106-154. doi: 10.1113/jphysiol.1962.sp006837
ImageCLEF. (2017). PlantCLEF 2017 [Plataforma de crowdsourcing]. Recuperado de https://www.imageclef.org/lifeclef/2017/plant
iNaturalist. (2021). Chile País: plantas. Recuperado de https://www.inaturalist.org/places/chile#taxon=47126
Kaggle. (2021). Plants [Dataset]. Recuperado de https://www.kaggle.com/tags/plants
Lasseck, M. (2017). Image-based Plant Species Identification with Deep Convolutional Neural Networks. CLEF. Recuperado de http://ceur-ws.org/Vol-1866/paper_174.pdf
Muñoz, I. (2020a). Recorte-redimension. GitHub. Recuperado de https://github.com/Yayosawa/recorteredimension
Muñoz, I. (2020b). Árboles de Chile, Versión 4. Recuperado de https://www.kaggle.com/yayosawa123/arbolesenchile/settings
Muñoz, I. (2020c). Nativonet. GitHub. Recuperado de https://github.com/Yayosawa/nativonet
OMG. (2017). Unified Modeling Language Specification [Software]. Recuperado de https://www.omg.org/spec/UML/
Pham, H., Dai, Z., Xie, Q., Luong, M-T, & Le, Q. V. (2020). Meta Pseudo Labels. ArXiv. doi: abs/2003.10580
PictureThis (n.d.). PictureThis Identificar Planta. [Aplicativo]. Recuperado de https://play.google.com/store/apps/details?id=cn.danatech.xingseus&hl=es_CL&gl=US
TensorFlow. (2020). Cuantización posterior al entrenamiento. Recuperado de https://www.tensorflow.org/lite/performance/post_training_quantization?hl=es-419
TensorFlow. (2021). Folha_de_planta. [Datasets]. Recuperado de https://www.tensorflow.org/datasets/catalog/plant_leaves
Rodríguez, G., & Rodríguez, R. (1981). Las especies de Pinaceae cultivadas en Chile. Bosque, 4(1), 25-43. doi:10.4206/bosque.1981.v4n1-03
Sandler, M., Howard, A.G., Zhu, M., Zhmoginov, A., & Chen, L. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, 4510-4520.
Downloads
Published
How to Cite
Issue
Section
License
Atoz is a open access journal and the authors have permission and are encouraged to deposit their papers in personal web pages, institutional repositories or portals before (pre-print) or after (post-print) the publication at AtoZ. It is just asked, when and where possible, the mention, as a bibliographic reference (including the atributted URL), to the AtoZ Journal.
The authors license the AtoZ for the solely purpose of disseminate the published work (peer reviewed version/post-print) in aggregation, curation and indexing systems.
The AtoZ is a Diadorim/IBICT green academic journal.
All the journal content (including instructions, editorial policies and templates) - except where otherwise indicated - is under a Creative Commons Attribution 4.0 International, since October 2020.
When published by this journal, articles are free to share (copy and redistribute the material in any support or format for any purpose, even commercial) and adapt (remix, transform, and create from the material for any purpose , even if commercial). You must give appropriate credit , provide a link to the license, and indicate if changes were made
AtoZ does not apply any charges regarding manuscripts submission/processing and papers publication.
























