Análisis de Canasta de mercado en supermercados mediante mapas auto-organizados
DOI:
https://doi.org/10.5380/atoz.v10i3.81491Keywords:
SOM, Análisis de canasta de compra, Python, Minería de Datos, Redes NeuronalesAbstract
Introducción: Una cadena importante de supermercados de la zona poniente de la capital de Chile, necesita obtener información clave para tomar decisiones. Esta información se encuentra disponible en las bases de datos, pero necesita ser procesada debido a la complejidad y cantidad de información, lo que genera una dificultad a la hora de visualizar. Método: Para este propósito, se ha desarrollado un algoritmo que utiliza redes neuronales artificiales, aplicando el método SOM de Kohonen. Para llevarlo a cabo, se han debido seguir ciertos procedimientos claves, como preparar la información, para luego utilizar solo los datos relevantes a las canastas de compra de la investigación. Luego de efectuado el filtrado, se tiene que preparar el ambiente de programación en Python para adaptarlo a los datos de la muestra, y luego proceder a entrenar el SOM con sus parámetros fijados luego de resultados de pruebas. Resultado: El resultado del SOM obtiene la relación entre los productos que más se compraron, posicionándolos topológicamente cerca, para conformar promociones y bundles, para que el retail mánager tome en consideración. Conclusión: En base a esto, se han hecho recomendaciones sobre canastas de compra frecuentes a la cadena de supermercados que ha proporcionado los datos utilizados en la investigación.
References
Agrawal, R. I. (1993). “Mining Association Rules between Sets of Items in Large Databases". SIGMOD'93.
Beomsoo Shim, K. C. (2012). CRM strategies for a small-sized online shopping mall based on association rules and sequential patterns.
Bhowmick, S. Z. (2003). “Association Rule Mining: A Survey.".
Chen, C.-F. T.-Y. (2010). Variable selection by association rules for customer churn prediction of multimedia on demand.
Decker, R., & Monien, K. (2003, 5). Market Basket Analysis With Neural Gas Networks and Self-Organizing Maps. Journal of Targeting, Measurement and Analysis for Marketing, 11, 373-386. doi:10.1057/palgrave.jt.5740092
Desmet, P. (2001, 4). Buying behavior study with basket analysis: Pre-clustering with a Kohonen map. European Journal of Economic and Social Systems, 15, 17-30. doi:10.1051/ejess:2001113
Dudani., S. (1975). The distance-weighted k-nearest-neighbour rule . IEEE Transactions on Systems, man and Cybernetics.
Dunham, M. L. (2001). “A Survey of Association Rules." .
IBM. (n.d.). RNN Recurrent Neural Network. Retrieved from IBM: https://www.ibm.com/cloud/learn/recurrent-neural-networks
Karpienko, M. H. (2016). Visualizing association rules in hierarchical groups.
Kohonen, T. (1990). The Self-Organizing Map. Proceedings of the IEEE, 78, 1464-1480.
MacQueen, J. (1967). “Some methods for classification and analysis of multivariate observations”. Proceedings of the Fifth Berkeley Symposium On Mathematical Statistics and Probabilities, 1. 281-296. .
P.Hart, T. C. (1967). Nearest neighbor pattern classification. Information Theory, IEEE Transactions.
R Motwani, C. S. (1997). Beyond Market Baskets: Generalizing Association rules to Correlations.
Reig, G. (2017). Market Basket Analysis in Retail. Univesidad Politécninca de Cataluña.
Strizhak, V. Z. (2006). CREDIT CARD FRAUD DETECTION USING SELF-ORGANIZING MAPS.
Team, E. C. (2019). Eclipse IDE 2019-06. Eclipse Foundation, Inc. 2934 Baseline Road, Suite 202 Ottawa, Ontario, Canada, K2H 1B2. Retrieved from https://www.eclipse.org/
Team, P. C. (2019). Python: A Language and Environment for programming. 9450 SW Gemini Dr.ECM 90772 Beaverton, OR 97008 USA. Retrieved from https://www.python.org/
Team, R. C. (2019). RapidMiner Studio: Programa para el an_lisis y miner_a de datos. 100 Summer Street, Suite 150 Boston, MA 02110, USA. Retrieved from https://rapidminer.com/
Xiao, Y.-D., Clauset, A., Harris, R., Bayram, E., Santago, P., & Schmitt, J. D. (2005). Supervised Self-Organizing Maps in Drug Discovery. 1. Robust Behavior with Overdetermined Data Sets. Journal of Chemical Information and Modeling, 45, 1749-1758. doi:10.1021/ci0500839
Downloads
Published
How to Cite
Issue
Section
License
Atoz is a open access journal and the authors have permission and are encouraged to deposit their papers in personal web pages, institutional repositories or portals before (pre-print) or after (post-print) the publication at AtoZ. It is just asked, when and where possible, the mention, as a bibliographic reference (including the atributted URL), to the AtoZ Journal.
The authors license the AtoZ for the solely purpose of disseminate the published work (peer reviewed version/post-print) in aggregation, curation and indexing systems.
The AtoZ is a Diadorim/IBICT green academic journal.
All the journal content (including instructions, editorial policies and templates) - except where otherwise indicated - is under a Creative Commons Attribution 4.0 International, since October 2020.
When published by this journal, articles are free to share (copy and redistribute the material in any support or format for any purpose, even commercial) and adapt (remix, transform, and create from the material for any purpose , even if commercial). You must give appropriate credit , provide a link to the license, and indicate if changes were made
AtoZ does not apply any charges regarding manuscripts submission/processing and papers publication.