Datamining: the search for knowledge about the singing evolution of the Thamnophilidae family

Authors

  • Leticia da Costa e Silva Programa de Pós Graduação em Ciência, Gestão e Tecnologia da Informação - UFPR
  • Denise Fukumi Tsunoda Universidade Federal do Paraná - UFPR
  • Viviane Deslandes Programa de Pós Graduação em Ecologia e Conservação - UFPR

DOI:

https://doi.org/10.5380/atoz.v1i1.41284

Keywords:

Datamining, Database, Forest birds, Thamnophilidae (bird), Bird songs

Abstract

Introduction: Describes the use of a data mining technique about the song, biology and micro-habitat of the Thamnophilidae bird family in  order to find patterns which relate them. Method: A database was built in Excel ® spreadsheet listing 82 species of the family of the bird Thamnophilidae comprising various attributes related to bird calling features, biology and micro-habitat in which they are found. For the analysis it was used the algorithm APRIORI in the WEKA 3.7.1 software. Results: The association of the different attributes of the 82 different species, considering 10% of minimum support and 90% of minimum confidence, allowed the rescued of 172 patterns, from which 42 contained one of the song’s attributes: PC1 e PC2. The patterns which related the attribute PC2 were the most expressive ones due to its relation to the size and gender of the family. Conclusions: The experiment demonstrated that the algorithm could be better suited in larger databases and/or when the data standardization presents a lower number of categories, what could be a limitation in the macroecology field. Nonetheless, it has presented itself as an alternative instrument to the exploratory study of the relations among diverse attributes, which results could serve as objects for further analysis.

Author Biographies

Leticia da Costa e Silva, Programa de Pós Graduação em Ciência, Gestão e Tecnologia da Informação - UFPR

Graduada em Administração - UEA, Mestranda em Ciência, Gestão e Tecnologia da Informação - UFPR

Denise Fukumi Tsunoda, Universidade Federal do Paraná - UFPR

Bacharel em Informática - UFPR, Mestre em Engenharia Elétrica e Informática Industrial - UTFPR, Doutora em Engenharia Biomédica - UTFPR. Professor Adjunto - UFPR/DECiGI

Viviane Deslandes, Programa de Pós Graduação em Ecologia e Conservação - UFPR

Graduada em Ciências Biológicas, Mestre em Ecologia - INPA, Doutoranda pelo Programa de Pós Graduação em Ecologia e Conservação - UFPR

References

AGRAWAL, R.; IMIELINSKI, T.; SWAMI, A. Mining association rules between sets of itens in large databases. ACM SIGMOD Conference Management of Data, Washington, 1993. Proceedings... Disponível em: http://www.rakesh.agrawal-family.com/papers/sigmod93assoc.pdf. Acesso em: 10 nov. 2010.

BAÇÃO, F.; PAINHO, M. Aspectos metodológicos da utilização do data mining no âmbito da geografia. Finisterra, v. 38, n. 75, p. 135-147, 2003.

BEGON, M.; TOWNSEND, C. R.; HARPER, J. L. Ecology: from individuals to ecosystems. 4 ed. Oxford: Blackwell, 2006.

BEKKER, R. M. et al. Long term datasets: from descriptive to predictive data using ecoinformatics. Journal of Vegetation Science, v. 18, n. 4, p. 457-462, 2007. Disponível em: http://dx.doi.org/10.1111/j.1654-1103.2007.tb02559.x/ abstract. Acesso em: 10 nov. 2010.

BLACKBURN, T. M. Method in macroecology. Disponível em: http://wolfweb.unr.edu/~ldyer/classes/blackburn.pdf. Acesso em: 20 abr. 2011.

CHARIF, R. A.; WAACK, A. M.; STRICKMAN, L. M. Raven Pro 1.4 user`s manual. Cornell Lab of Ornithology, Ithaca, NY. 2010. Disponível em: http://www.birds.cornell.edu/brp/raven/RavenOverview.html. Acesso em: 14 set. 2010.

DEL HOYIO, J.; ELLIOT, A.; CHRISTIE, D. A (Ed.). Handbook of the birds of the world. 8 v. (Broadbills to Tapaculos). Barcelona: Lynx, 2003.

DUNNING, J. B (Ed.). CRC handbook of avian body masses. 2 ed. Boca Raton: CRC, 2008.

FAYYAD, U.; PIATETSKY-SHAPIRO, G.; SMYTH, P. From data mining to knowledge discovery in databases, 1997. Disponível em: http://www.kdnuggets.com/gpspubs/aimag-kdd-overview-1996-Fayyad.pdf. Acesso em: 10 out. 2010.

______. Knowledge discovery and data mining: towards a unifying framework. 1996. Disponível em: http://www.aaai.org/Papers/KDD/1996/KDD96-014.pdf. Acesso em: 10 out. 2010.

GLUSMAN, G. et al. The Olfactory receptor gene superfamily: data mining, classification and nomenclature. Mammalian Genome, NY, 2000.

GOLDSCHMIDT, R.; PASSOS, E. Data mining: um guia prático. Rio de Janeiro: Elsevier, 2005.

GOTELLI, N. J. Perspectives in biogeography: hypothesis testing, curve fitting, and data mining in macroecology. International Biogeography Society Newsletter, v. 6, n. 3, p. 1-7, 2008.

LI, D.; DI, K.; LI, D. Land use classification of remote sensing image with GIS data based on spatial data mining techniques. Archives of Photogrammetry and Remote Sensing, Amsterdam, v. 33, parte b3, 2000.

NEVES, R. de C. D das. Pré-processamento no processo de descoberta de conhecimento em banco de dados. 2003. Dissertação (Programa de Pós-graduação em Computação) - Instituto de Informática, Universidade Federal do Rio Grande do Sul, Porto Alegre, 2003.

TKALCIC, M. csv2arff. 2008. Disponível em: http://slavnik.fe.uni-lj.si/markot/csv2arff/csv2arff.php. Acesso em: 11 abr. 2011.

XENO-CANTO. 2005-2010. Disponível em: http://www.xeno-canto.org/. Acesso em: 20 abr 2010.

Published

2011-06-01

How to Cite

Costa e Silva, L. da, Tsunoda, D. F., & Deslandes, V. (2011). Datamining: the search for knowledge about the singing evolution of the Thamnophilidae family. AtoZ: Novas práticas Em informação E Conhecimento, 1(1), 61–70. https://doi.org/10.5380/atoz.v1i1.41284