Business Intelligence para apoio à gestão na construção civil: uma revisão sistemática da literatura
DOI:
https://doi.org/10.5380/atoz.v9i1.72574Palavras-chave:
Business Intelligence, Ferramentas Computacionais, Análise de dados, Obras de Edificações, Revisão Sistemática da Literatura.Resumo
Introdução: A gestão é essencial para que se cumpram os requisitos de um projeto, e as ferramentas computacionais de Business Intelligence (BI) têm grande potencial de contribuição, fornecendo informações gerenciais sobre o negócio. Ferramentas desse tipo são utilizadas em diversos setores da indústria, porém na construção civil, foco deste trabalho, o cenário é diferente, com muito a avançar. Diante disso, apresenta-se um levantamento das ferramentas de BI aplicáveis ao setor da construção e suas utilizações. Método: Conduz uma revisão sistemática da literatura, que analisou 595 artigos de seis bases de dados (ACM, Engineering Village, IEEE, Material Science Engineering, Science Direct, Scopus e Web of Science). Resultados: Identifica 12 diferentes aplicações, principalmente na área de gestão de custos, orçamento da obra e segurança do trabalho. Nas aplicações, foram evidenciadas utilizações das tecnologias de Data Warehouse e OLAP. Verifica que a maioria das ferramentas de BI foram desenvolvidas para cada empresa em detrimento dos softwares comerciais. Conclusão: Existem diversas ferramentas de BI para a construção civil, com diferentes aplicações. A maioria dos softwares foram desenvolvidos para cada caso estudado devido às características únicas do setor da construção. A adoção em larga escala das ferramentas passe pela cooperação entre empresas, entidades de classe e universidades. Verifica limitações na pesquisa quanto à caracterização das empresas, devido à ausência desses dados nos artigos analisados. Sugere que os desafios de implementação das tecnologias e as limitações verificadas sejam abordados em estudos futuros.
Referências
Ahmad, I., Azhar, S., & Lukauskis, P. (2004). Development of a decision support system using data warehousing to assist builders/developers in site selection. Automation in Construction, 13(4), 525–542. doi: 10.1016/j.autcon.2004.03.001.
Cao, Y., Chau, K. W., Anson, M., & Zhang, J. (2002). An Intelligent Decision Support System in Construction Management by Data Warehousing Technique. 360–369. doi: 10.1007/3-540-45785-2_28.
Chau, K. W., Anson, M., Ying, C., & Jianping, Z. (2003). Integration of data warehouse into knowledge-based system on construction management decision making. HKIE Transactions Hong Kong Institution of Engineers, 10(1), 8–13. doi: 10.1080/1023697X.2003.10667895.
Chau, K. W., Anson, M., & Zhang, J. P. (2005). 4D dynamic construction management and visualization software: 1. Development. Automation in Construction, 14(4), 512–524. doi: 10.1016/j.autcon.20.11.002.
Chau, K. W., Cao, Y., Anson, M., & Zhang, J. (2003). Application of data warehouse and decision support system in construction management. Automation in Construction, 12(2), 213–224. doi: 10.1016/S0926-5805(02)00087-0.
Chen, H., Chiang, R., & Storey, V. (2012). Business Intelligence and Analytics: From Big Data to Big Impact. MIS Quarterly, 36, 1165–1188. doi: 10.2307/41703503.
Cheng, C. W., Lin, C. C., & Leu, S. S. (2010). Use of association rules to explore cause-effect relationships in occupational accidents in the Taiwan construction industry. Safety Science, 48(4), 436–444. doi: 10.1016/j.ssci.2009.12.005.
Chong, H. Y., & Phuah, T. H. (2013). Incorporation of database approach into contractual issues: Methodology and practical guide for organizations. Automation in Construction, 31, 149–157. doi: 10.1016/j.autcon.2012.10.007.
Gajendran, T., & Brewer, G. (2012). Cultural consciousness and the effective implementation of information and communication technology. Construction Innovation, 12(2), 179–197. doi: 10.1108/14714171211215930.
Girsang, A. S., Isa, S. M., Saputra, H., Nuriawan, M. A., Ghozali, R. P., & Kaburuan, E. R. (2018). Business Intelligence for Construction Company Acknowledgement Reporting System. Proceedings of 1st 2018 Indonesian Association for Pattern Recognition International Conference, INAPR 2018, 113–122. doi: 10.1109/INAPR.2018.8627012.
Gowthami, S., & Venkatakrishnakumar, S. (2016). Impact of Smartphone : A pilot study on positive and negative effects. International Journal of Scientific Engineering and Applied Science, 3(2), 2395–3470.
Hammad, A., AbouRizk, S., & Mohamed, Y. (2014). Application of KDD Techniques to Extract Useful Knowledge from Labor Resources Data in Industrial Construction Projects. Journal of Management in Engineering, 30(6), 05014011. doi: 10.1061/(asce)me.1943-5479.0000280.
IBGE. (2020). Instituro Brasileiro de Geografia e Estatística - Contas nacionais trimestrais de 2019. Rio de Janeiro: IBGE.
Kitchenham, B. (2007). Guidelines for performing Systematic Literature Reviews in Software Engineering. Biomedical and Environmental Sciences, 13(1), 37–43. doi: 10.1145/1134285.1134500.
Konikov, A. (2018). A selective study of Information technologies to improve operations efficiency in construction. MATEC Web of Conferences, 170, 01110. doi: 10.1051/matecconf/201817001110.
Konikov, A., Kulikova, E., & Stifeeva, O. (2018). Research of the possibilities of application of the Data Warehouse in the construction area. MATEC Web of Conferences, 251, 03062. doi: 10.1051/matecconf/201825103062.
Li, Y., & Zhang, X. (2013). Web-based construction waste estimation system for building construction projects. Automation in Construction, 35, 142–156. doi: 10.1016/j.autcon.2013.05.002.
Lu, Y., Li, Y., Skibniewski, M., Wu, Z., Wang, R., & Le, Y. (2014). Information and communication technology applications in architecture, engineering, and construction organizations: A 15-year review. Journal of Management in Engineering, 31(1), 1–19. doi: 10.1061/(ASCE)ME.1943-5479.0000319.
Ma, L., Luo, H. Bin, & Chen, H. R. (2013). Safety risk analysis based on a geotechnical instrumentation data warehouse in metro tunnel project. Automation in Construction, 34, 75–84. doi: 10.1016/j.autcon.2012.10.009.
Ma, Z., Lu, N., & Wu, S. (2011). Identification and representation of information resources for construction firms. Advanced Engineering Informatics, 25(4), 612–624. https://doi.org/10.1016/j.aei.2011.08.008.
Martínez-Rojas, M., Marin, N., & Amparo Vila, M. (2012). The Role of Information Technologies to Address Data Handling in Construction Project Management. Journal of Computing in Civil Engineering, 30(4), 1–11. doi: 10.1061/(ASCE)CP.1943-5487.
Martínez-Rojas, M., Marín, N., & Miranda, M. A. V. (2016). An intelligent system for the acquisition and management of information from bill of quantities in building projects. Expert Systems with Applications, 63, 284–294. doi: 10.1016/j.eswa.2016.07.011.
Montaser, A. & Montaser, A. (2017). Web Based Project Integrated Controls System. 2017 Proceedings of the 34rd ISARC. Taipei, Taiwan.
Moon, S. W., Kim, J. S., & Kwon, K. N. (2007). Effectiveness of OLAP-based cost data management in construction cost estimate. Automation in Construction, 16(3), 336–344. doi: 10.1016/j.autcon.2006.07.008.
Muntean, M., & Surcel, T. (2013). Agile BI: The Future of BI. Informatica Economica, 17(3), 114–124. doi: 10.12948/issn14531305/17.3.2013.10.
Negash, S., & Gray, P. (2008). Business Intelligence. In F. Burstein & C. W. Holsapple (Eds.), Handbook on Decision Support Systems 2 (pp. 175-193). Berlin: Springer.
Rezaei, A. R., Çelik, T., & Baalousha, Y. (2011). Performance measurement in a quality management system. Scientia Iranica, 18(3 E), 742–752. doi: 10.1016/j.scient.2011.05.021.
Rezgui, Y. (2001). Review of information and the state of the art of knowledge management practices in the construction industry. Knowledge Engineering Review, 16(3), 241–254. doi: 10.1017/S026988890100008X.
Rujirayanyong, T., & Shi, J. J. (2005). Company-Wide Project Data Integration for a Construction Organization (pp.1–10). doi: 10.1061/40754(183)85.
Rujirayanyong, T., & Shi, J. J. (2006). A project-oriented data warehouse for construction. Automation in Construction, 15(6), 800–807. doi: 10.1016/j.autcon.2005.11.001.
Sapateiro, C., & Rui, B. (2019). Bringing Human Factor to Business Intelligence. 11th Ineka Conference. Verona.
Szelka, J., & Wrona, Z. (2010). Application of Analytic Databases to Support Decision Making in Structural Engineering / Zastosowanie Analitycznych Baz Danych Przy Podejmowaniu Decyzji W Obszarze Budownictwa Ladowego. Archives of Civil Engineering, 56(2), 173–192. doi: 10.2478/v.10169-010-0009-6.
Tranfield, D., Denyer, D., & Smart, P. (2003). Towards a Methodology for Developing Evidence-Informed Management Knowledge by Means of Systematic Review. British Journal of Management, 14, 207–222.
Vuori, V. (2007). Business intelligence activities in construction companies in Finland-A series of case studies. Proceedings of the European Conference on Knowledge Management, ECKM, (November), 1086–1092.
Wang, Q., Xi, L., & Gao, K. (2009). Application of Business Intelligence in the information development of Construction Enterprise. 5th International Conference on Natural Computation, ICNC 2009, 6(3), 212–215. doi: .10.1109/ICNC.2009.674.
Webster, J., & Watson, R. T. (2002). Analyzing the past to prepare for the future : Writing a literature review R. MIS Quarterly, 26(2), 13–23. doi: 10.2307/4132319.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
A revista AtoZ é um periódico científico de acesso aberto e o copyright dos artigos e da entrevista pertence aos respectivos autores/entrevistados com cessão de direitos para a AtoZ no que diz respeito à inclusão do material publicado (revisado por pares/postprint) em sistemas/ferramentas de indexação, agregadores ou curadores de conteúdo.
Todo o conteúdo da Revista (incluindo-se instruções, política editorial e modelos) está sob uma licença Creative Commons Atribuição 4.0 Não Adaptada, a partir de Outubro de 2020.
Ao serem publicados por esta Revista, os artigos são de livre uso para compartilhar (copiar e redistribuir o material em qualquer suporte ou formato para qualquer fim, mesmo que comercial) e adaptar (remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial). É preciso dar o crédito apropriado , prover um link para a licença e indicar se mudanças foram feitas .
A AtoZ não cobra qualquer tipo de taxa para submissão e/ou processamento e/ou publicação de artigos.