Mineração de dados: aplicações, ferramentas, tipos de aprendizado e outros subtemas
DOI:
https://doi.org/10.5380/atoz.v3i2.41340Palavras-chave:
mineração de dados, ferramentas para mineração de dados, mineração de dados - usoResumo
Especialistas na área de mineração de dados apresentam conceitos, características, limites e potencialidades da mineração de dados, incluindo indicação de ferramentas disponíveis, relações com a inteligência artificial, e implicações de seu uso na área de business intelligence.
Referências
Alcala-Fdez, J., Fernandez, A., Luengo, J., Derrac J., Garcia, S., Sanchez, S., & Herrera F. (2011). KEEL data-mining software tool: Data set repository, integration of algorithms and experimental analysis framework. J. of Mult.-Valued Logic & Soft Computing, 17, 255–287. Retirado de http://sci2s.ugr.es/publications/ficheros/2010-JMVLSC-Alcala_Fdez-KEEL-dataset.pdf
Demsar, J., Zupan, B., Leban, G., & Curk, T. (2004). Orange: From experimental machine learning to interactive data mining. 8th European Conference on Principles and Practice of Knowledge Discovery in Databases, 537-539. doi: 10.1007/978-3-540-30116-5_58
Fayyad, U. M., Piatetsky Shapiro, G., Smyth, P., & Uthurusamy, R. (1996). Advances in Knowledge Discovery and Data Mining. California, USA: AAAI, MIT.
Fernandez, G. (2003). Data mining using SAS application. London: Chapman & Hall.
Hofmann, M., & Klinkenberg, R. (2013). RapidMiner: Data mining use cases and business analytics applications. Retirado de https://books.google.com/books?isbn=1482205491
Ingersoll, G. (2009). Introducing Apache Mahout Scalable, commercial-friendly machine learning for building intelligent applications. Retirado de http://www.ibm.com/developerworks/java/library/j-mahout/j-mahout-pdf.pdf
Rakotomalala, R. (2005). TANAGRA: a free software for research and academic purposes. Proceedings of EGC RNTI-E-3, 2th, 697-702. Retirado de http://eric.univ-lyon2.fr/~ricco/tanagra/en/tanagra.html
Seidman, C. (2001). Data mining with Microsoft SQL Server 2000 technical reference. Redmond: Microsoft.
Tamayo, P., Berger, C., Campos, M., Yarmus, J., Milenova, B., Mozes, A., ... , & Myczkowski, J. (2005). Oracle data mining. In Maimon, O., & Rokach, L. (Eds.). Data Mining and Knowledge Discovery Handbook (1315-1329). New York: Springer. doi: 10.1007/0-387-25465-X_63
Witten I. H., & Frank E. (2000). Machine learning algorithms in Java. Retirado de http://www.cs.waikato.ac.nz/ml/weka/
Publicado
Como Citar
Edição
Seção
Licença
A revista AtoZ é um periódico científico de acesso aberto e o copyright dos artigos e da entrevista pertence aos respectivos autores/entrevistados com cessão de direitos para a AtoZ no que diz respeito à inclusão do material publicado (revisado por pares/postprint) em sistemas/ferramentas de indexação, agregadores ou curadores de conteúdo.

Todo o conteúdo da Revista (incluindo-se instruções, política editorial e modelos) está sob uma licença Creative Commons Atribuição 4.0 Não Adaptada, a partir de Outubro de 2020.
Ao serem publicados por esta Revista, os artigos são de livre uso para compartilhar (copiar e redistribuir o material em qualquer suporte ou formato para qualquer fim, mesmo que comercial) e adaptar (remixar, transformar, e criar a partir do material para qualquer fim, mesmo que comercial). É preciso dar o crédito apropriado , prover um link para a licença e indicar se mudanças foram feitas .
A AtoZ não cobra qualquer tipo de taxa para submissão e/ou processamento e/ou publicação de artigos.























