Morfologia do talude continental leste do Ceará, margem equatorial brasileira
DOI:
https://doi.org/10.5380/qeg.v16i1.100625Palavras-chave:
cânions submarinos, batimetria multifeixe, sísmica 3D, geomorfologia marinhaResumo
Mapear o fundo marinho é um objetivo global da Década do Oceano. No caso da margem equatorial brasileira (MEB), região considerada uma província petrolífera emergente, conhecer o fundo marinho é ainda mais urgente e essencial para minimizar riscos geológicos em projetos de infraestrutura offshore e monitorar áreas ambientalmente sensíveis. Esta pesquisa objetiva compreender a morfologia do talude continental leste do estado do Ceará, setor adjacente ao Rio Jaguaribe, na MEB. Para tal propósito, foram utilizados dados de batimetria multifeixe adquiridos pelo Projeto SeabedMap e um volume sísmico concedido pela ANP. Os dados foram analisados a fim de caracterizar as principais feições submarinas e avaliar processos geológicos e oceanográficos que influenciam a estabilidade do fundo. Foram identificados 13 cânions submarinos de perfis em “V” e “U”. Nove cânions foram classificados em estágio evolutivo de transição e quatro cânions, em estágio maduro. Seus comprimentos variam de 11,2 a 45,1 km, larguras de 1 a 4,1 km e profundidades entre 0,2 e 0,5 km. Quatro deles apresentam sinuosidade acima de 1,1 e dois exibem inclinação de 8°, sendo este valor superior à média regional. Também foram mapeadas ravinas com 0,45 a 5,1 km de extensão, movimentos de massa (com formatos semicirculares e triangulares), cinco depressões circulares, dunas e diversas cadeias sedimentares. O mapeamento destas feições proporcionou conhecimento sobre os processos geológicos e oceanográficos que moldam o ambiente deposicional marinho profundo da região. Os resultados fornecem subsídios que podem auxiliar no planejamento espacial marinho, na prevenção de riscos associados à instalação de cabos e dutos submarinos em áreas instáveis, além de contribuírem para futuras pesquisas em geohabitats e para a gestão ambiental dessa região do talude continental do Atlântico equatorial.
Referências
ANDRESEN K.J.; HUUSE M. 2011. ‘Bulls-eye’ pockmarks and polygonal faulting in the Lower Congo Basin: Relative timing and implications for fluid expulsion during shallow burial. Marine Geology, 279:111-127. https://doi.org/10.1016/j.margeo.2010.10.016
BIAN J.; WANG H.; YANG K.; CHEN J.; CAO X. 2021. Spatial differences in pressure and heat transfer characteristics of CO₂ hydrate with dissociation for geological CO₂ storage. Energy, 225:122508. https://doi.org/10.1016/j.energy.2021.122508.
BOURGET J.; AINSWORTH R.B.; THOMPSON S. 2014. Seismic stratigraphy and geomorphology of a tide or wave dominated shelf-edge delta (NW Australia): process-based classification from 3D seismic attributes and implications for the prediction of deep-water sands. Marine and Petroleum Geology, 57:359-374. https://doi.org/10.1016/j.marpetgeo.2014.05.021
BRAGION E.; AKTER H.; KUMAR M.; XU M.; ABDELMONIEM A.; GILL S. 2023. Fortaleza: The emergence of a network hub. ArXiv (abs/2307.13602). Disponível em: https://arxiv.org/abs/2307.13602
CANALS, M., PUIG, P., DE MADRON, X. et al. Flushing submarine canyons. Nature 444, 354–357 (2006). https://doi.org/10.1038/nature05271
CARTWRIGHT J.; HUUSE M.; APLIN A. 2007. Seal bypass systems. AAPG Bulletin, 91(8):1141-1166.
CHAND, S., RISE, L., OTTESEN, D., M.F.J. DOLAN, V. BELLEC, R. BOE, 2009. Pockmark-like depressions near the Goliat hydrocarbon field, Barents Sea: Morphology and genesis. Marine and Petroleum Geology, 26(7):1035-1042. https://doi.org/10.1016/j.marpetgeo.2008.09.002.
COLEY, K. 2022. A Global Ocean Map is Not an Ambition, But a Necessity to Support the Ocean Decade. Marine Technology Society Journal. https://doi.org/10.4031/mtsj.56.3.3.
CORRÊA, I.C.S.T. 2021.Morfologia do Ambiente Marinho. Porto Alegre: CECO/PGGM/IGEO/UFRGS. Edição do autor,. E-Book.
CRISÓSTOMO‐FIGUEROA, A., DORRELL, R., AMY, L., MCARTHUR, A., & MCCAFFREY, W. 2024. Modeling the Tilt of Bend‐Traversing Turbidity Currents: Implications for Sinuous Submarine Channel Development. Journal of Geophysical Research: Oceans. https://doi.org/10.1029/2023jc020131.
DANDAPATH, S., CHAKRABORTY, B., KARISIDDAIAH, S. M., MENEZES, A., RANADE, S., FERNANDES, W., NAIK, D. N., RAJU, K.N.P. Morphology of pockmarks along the western continental margin of India: Employing multibeam bathymetry and backscatter data. Marine and Petroleum Geology, v. 27, p. 2107-2117, 2010. https://doi.org/10.1016/j.marpetgeo.2010.09.005.
DE ALMEIDA, F., DE MELLO, R., & BASTOS, A. 2023. The influence of submarine canyons-related processes on recent benthic foraminiferal distribution, Espírito Santo Basin, Southeastern Brazil. Marine Micropaleontology. https://doi.org/10.1016/j.marmicro.2023.102212.
DIAS, F.J.S. Circulação e massas de água na plataforma continental leste do Ceará: modelagem numérica e observações. 2011. Tese (Doutorado em Oceanografia Física). Instituto Oceanográfico, Universidade de São Paulo, São Paulo.
DOMÍNGUEZ-CARRIÓ, C., RIERA, J., ROBERT, K., ZABALA, M., REQUENA, S., GORI, A., OREJAS, C., LO IACONO, C., ESTOURNEL, C., CORBERA, G., AMBROSO, S., URIZ, M., LÓPEZ-GONZÁLEZ, P., SARDÀ, R., & GILI, J. 2022. Diversity, structure and spatial distribution of megabenthic communities in Cap de Creus continental shelf and submarine canyon (NW Mediterranean). Progress in Oceanography. https://doi.org/10.1016/j.pocean.2022.102877.
DOURADO, F., ARRAES, T., & SILVA, M. 2013. O megadesastre da região serrana do rio de janeiro – as causas do evento, os mecanismos dos movimentos de massa e a distribuição espacial dos investimentos de reconstrução no pós-desastre. Anuário Do Instituto De Geociências - UFRJ, 35_2(1), 43-54.
DOVE, D., NANSON, R., BJARNADÓTTIR, L., GUINAN, J., GAFEIRA, J., POST, A., DOLAN, M., STEWART, H., AROSIO, R., & SCOTT, G. 2020. A two-part seabed geomorphology classification scheme (v.2); Part 1: morphology features glossary. https://doi.org/10.5281/ZENODO.4075248.
EMERY, K.O. 1968. Relict sediments on continental shelves of the world. AAPG Bulletin, 52, 445–464.
FARRE, J.A., MCGREGOR, B.A., RYAN, W.B.F., ROBB, J.M., 1983. Breaching the shelf break: passage from youthful to mature phase in submarine canyon evolution. In: Society for Sedimentary Geology (SEPM), Special Publication, 33, pp. 25-39.
FREIRE, G. S. S. 1985. Geologia Marinha da Plataforma Continental do Estado do Ceará. 1985. 162p. Dissertação (Mestrado em Geociências) - Departamento de Geologia, Universidade Federal de Pernambuco, Recife.
FREITAS, C., SOUZA, C., MACHADO, J., & PORTO, M. 2001. Acidentes de trabalho em plataformas de petróleo da bacia de campos, rio de janeiro, brasil. Cadernos De Saúde Pública, 17(1), 117-130
FREIWALD, A.; ROBERTS, J. M.; WHEELER, A. J. 2019. Cold-water corals and ecological connectivity. Biological Conservation, v. 237, p. 46–5.
GARONE, R.V. Evolution of Neogene Deposits in the Brazilian Equatorial margin: A 3D Seismic Interpretation Approach. 2018. Tese (Corso di Laurea Magistrale in Geofisica di Esplorazione ed Applicata) - Dipartimento di Scienze della Terra, Università di Pisa, Pisa,.
GAY, A.; BERNDT, C.; LOPEZ, M.; SERANNE, M. 2007. Geological controls on focused fluid flow associated with seafloor seeps in the Lower Congo Basin. Marine Geology, v. 244, n. 1-4, p. 68-92.
HE, Z., OKON, S., HU, P., ZHANG, H., EWA-OBOHO, I., & LI, Q. 2025. Submarine gravity flows and their interaction with offshore pipelines: A review of recent advances. Engineering Geology. https://doi.org/10.1016/j.enggeo.2025.107914.
HEEZEN, B.C., HOLLISTER, C.D. 1971. The Face of the Deep. Oxford University Press, 659p.
HOVLAND, M. 1981. A deep-sea area with probable mud diapirism and pockmarks. Marine Geology, 44(1-2), 9–14.
HOVLAND, M., HEGGLAND, R., VRIES, M., & TJELTA, T. 2010. Unit-pockmarks and their potential significance for predicting fluid flow. Marine and Petroleum Geology, 27(6), 1190-1199.
HUANG, ZHI & NICHOL, SCOTT & HARRIS, PETER & CALEY, M. 2014. Classification of submarine cânions on the Australian continental margin. Geologia Marinha, v. 357, p. 362-383. DOI: 10.1016/j.margeo.2014.07.007
ISWARA, R., & AFRIANSYAH, A. 2022. Arrangement of Submarine Cables and Pipelines as Part of Marine Spatial Planning in Indonesia. Jambe Law Journal. https://doi.org/10.22437/jlj.5.1.1-38.
JANOCKO, M.; NEMEC, W.; HENRIKSEN, S.; WARCHOL, M. 2013. The diversity of deep-water sinuous channel belts and slope valley-fill complexes. Marine and Petroleum Geology. v. 41, p. 7-34.
KANE, I., MCCAFFREY, W., & PEAKALL, J. (2008). Controls on sinuosity evolution within submarine channels. Geology, 36, 287-290. https://doi.org/10.1130/G24588A.1.
KING, L.H.; MACLEAN, B. 1970. Pockmarks on the Scotian Shelf. GSA Bulletin, v. 81, p. 3141-3148.
KRISTOFFERSEN, Y., COAKLEY, B. J., HALL, J. K., EDWARDS, M. 2007.Mass wasting on the submarine Lomonosov Ridge, central Arctic Ocean. Marine Geology, v. 243, n. 1-4, p. 132-142, 2007. https://doi.org/10.1016/j.margeo.2007.04.012
LAWRENCE, T.O.; AARON, P.M. 2020 Sediment Wave and Cyclic Steps as Mechanism for Sediment Transport in Submarine Cânions Thalweg. International Scholarly and Scientific Research & Innovation. v. 14, n. 7, p. 156-171.
LIN, Z., KUANG, Y., LI, W., & ZHENG, Y. 2024. Research status and prospects of CO2 geological sequestration technology from onshore to offshore: A review. Earth-Science Reviews. https://doi.org/10.1016/j.earscirev.2024.104928.
MAESTRELLI, D., MASELLI, V., KNELLER, B., CHIARELLA, D., SCARSELLI, N., VANNUCCHI, P., JOVANE, L., IACOPINI, D. 2020. Characterisation of submarine depression trails driven by upslope migrating cyclic steps: Insights from the Ceará Basin (Brazil). Marine and Petroleum Geology, 115, 104291.
MAIA DE ALMEIDA, N., ALVES, T. M., NEPOMUCENO FILHO, F., FREIRE, G. S. S., SOUZA, A. C. B., OLIVEIRA K. M. L., NORMANDO, M. N., BARBOSA, T. H. S. 2020. A three-dimensional (3D) structural model for an oil-producing basin of the Brazilian equatorial margin. Marine and Petroleum Geology, [s. l.], v. 122, n. 104599, p. 1-17. https://doi.org/10.1016/j.marpetgeo.2020.104599
MAIA DE ALMEIDA, N., FREIRE, G.S.S., SOUTO, M.V.S., NORMANDO, M.N. 2016. Mapeamento de estruturas submersas e sedimentologia utilizando dados SRTM Plus e Landsat 8: região adjacente ao Rio Jaguaribe, Plataforma Leste do Ceará. Revista de Geologia, 29, 133–146.
MAIA DE ALMEIDA, N., VITAL, H., & EICHLER, P. 2017. Aspectos sedimentológicos do talude continental setentrional do Rio Grande Do Norte, NE do brasil. Pesquisas Em Geociências, 44(3), 537.
MAIA DE ALMEIDA, N..; VITAL, H.; GOMES, M.P. 2015. Morphology of submarine cânions alongthe continental margin of the Potiguar Basin, NE Brazil. Marine and Petroleum Geology. v. 68, p. 307-324.
MAIA DE ALMEIDA, N.M., ALVES, T.M., NEPOMUCENO FILHO, F., FREIRE, G.S.S., SOUZA, A.C.B., NORMANDO, M.N., OLIVEIRA, K.M.L., BARBOSA, T.H.S., 2020. Tectono-sedimentary evolution and petroleum systems of the Mundaú sub-basin: a new deep-water exploration frontier in equatorial Brazil. AAPG (Am. Assoc. Pet. Geol.) Bull. 104 (4), 795–824. https://doi.org/10.1306/07151917381. April 2020.
MARTINS, J. L. 2001. Noções do método sísmico e de resolução sísmica. In: Severiano Ribeiro, H. J. P. Estratigrafia de Sequencias – Fundamentos e Aplicações. Editora Unisinos. São Leopoldo, 428 p.
MATOS, R. M. D. 1992. The Northeast Brazilian Rift System. Tectônics, Washington, v. 11, n 4, p. 766-791.
MATOS, R. M. D. 2000. Tectonic evolution of the equatorial South Atlantic, Geophysical Monograph Series. In: MOHRIAK, W. U.; TALWANI, M (Eds.). Atlantic Rifts and Continental Margins, v. 115.
MAYER, L. 2020. Can we map the entire global ocean seafloor by 2030?. Journal of the Acoustical Society of America, 148, 2634-2634. https://doi.org/10.1121/1.5147324.
MAYER, L., JAKOBSSON, M., ALLEN, G., DORSCHEL, B., FALCONER, R., FERRINI, V., LAMARCHE, G., SNAITH, H., & WEATHERALL, P. 2018. The Nippon Foundation-GEBCO Seabed 2030 Project: The Quest to See the World's Oceans Completely Mapped by 2030., 8, 63. https://doi.org/10.3390/GEOSCIENCES8020063.
MCADOO, B.G.; PRATSON, L.F.; ORANGE, D.L. 2000. Geomorfologia de deslizamentos submarinos, Talude Continental dos EUA. Geologia Marinha, v. 169, n. 1-2, pág. 103-136.
MILLIMAN, J.D., SYVITSKI, J.P.M. 1992. Geomorphic/tectonic control of sediment discharge to the ocean: The importance of small mountainous rivers. The Journal of Geology, 100, 525–544. http://dx.doi.org/10.1086/629606.
MOHRIAK, W. U.; BROWN, D. E.; ANKA, Z. 2003. Post-rift compressional structures and sedimentary sequences in the offshore sedimentary basins of Brazil. Geological Society, London, Special Publications, v. 207, n. 1, p. 1-25.
MORAIS, J. O.; XIMENES NETO, A. R.; PESSOA, P. R. S.; PINHEIRO, L. S. 2019. Morphological and sedimentary patterns of a semi-arid shelf, Northeast Brazil. Geo-Marine Letters, v. 40, p. 835–842.
MOSHER, D.C. et al. (2010). Submarine Mass Movements and Their Consequences. In: Mosher, D.C., et al. Submarine Mass Movements and Their Consequences. Advances in Natural and Technological Hazards Research, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-90-481-3071-9_1
MOSHER, D.C., PIPER, D.J.W. (2007). Analysis of multibeam bathymetry and seabed samples from the St. Pierre Slope and Whale Bank, Canadian Atlantic Margin – emphasis on linkages between seabed morphology, surficial geology and slope stability. Marine Geology, 243(1-4), 99–119.
n, v. 51, p. 45-60, 1994.
NELSON, C. H.; ESCUTIA, C.; DAMUTH, J. E.; TWICHELL, D. C. Interplay of mass-transport and turbidite-system deposits in different active tectonic and passive continental margin settings: external and local controlling factors. Sedimentary Geology. v. 96, p. 39-66, 2011.
NOAA OFFICE OF COAST SURVEY. Data Acquisition and Processing Report: Hydrographic Survey OPR-P337-FA-22. National Oceanic and Atmospheric Administration, 2022. Disponível em: https://nauticalcharts.noaa.gov/publications/hydrographic-surveys.html.
NORMARK, W.R. (1970). Growth patterns of deep-sea fans. Geological Society of America Bulletin, 81(2), 560–566.
OLIVEIRA JÚNIOR, E. A. Mapeamento e Caracterização dos Sistemas de Transporte Canalizado de Escala Regional da Margem Continental Brasileira. 2019. Dissertação (Mestrado em Geologia e Geofísica) – Universidade Federal Fluminense, Niterói, 2019.
OLIVEIRA, C. AND JELINEK, A. (2017). História termotectônica da margem continental brasileira a partir de dados de traços de fissão em apatita. Pesquisas Em Geociências, 44(3), 387.
OLIVEIRA, K.M.L. Characterization of deepwater reservoirs in a frontier basin in the Brazilian equatorial margin: from seismic processing to machine learning approach. 2020. 139 f. Tese (Doutorado em Geologia). Universidade Federal do Ceará, Fortaleza. 2020.
PAIM, P., CHEMALE, F., LEHN, I., BECKER-KERBER, B., & MARTINS, M. (2021). Crono-correlação entre as bacias do Camaquã (RS) e do Itajaí (SC): implicações paleoambientais e paleogeográfica., 165-184.
PELLEGRINI, B.S.; RIBEIRO, H.J.P.S. Exploratory plays of Pará Maranhão and Barreirinhas basins in deep and ultra-deep waters, Brazilian Equatorial Margin. Brazilian Journal of Geology. v. 48, n. 3, p. 485-502, 2018.
PESSOA NETO, O. C. Stratigraphy of sequences of mixed neogenica platform in the Potiguar basin, equatorial margin Brazilian. Brazilian Journal of Geosciences, 33(3), 263–278, 2003.
PESSOA NETO, O. C.; SOUZA, I. M.; MORAES, L. M. S.; GOMES, P. B. Bacia Potiguar. In: BOUCHETTE, F. (Ed.). Bacias Sedimentares Brasileiras. Rio de Janeiro: Petrobras, 2007. p. 1-26.
PINHEIRO, L. et al. 2020. A Plataforma Continental Semiárida do Brasil. In: Muehe, D., Lins-de-Barros, F.M., Pinheiro, L.S. (Orgs.), Geografia Marinha: oceanos e costas na perspectiva de geógrafos, p. 129–152. Rio de Janeiro: PGGM. ISBN 978-65-992571-0-0.
PRATHER, B., O’BYRNE, C., PIRMEZ, C., & SYLVESTER, Z. 2017. Sediment partitioning, continental slopes and base‐of‐slope systems. Basin Research, 29. https://doi.org/10.1111/bre.12190.
PRATHER, B.E., HODGSON, D.M., VAN TOORENENBURG, K.A., FLINT, S.S., & MORRIS, E. 2020. Sediment partitioning, stratal stacking patterns, and basin-filling processes in deep-water deposystems. Journal of Sedimentary Research, 90(10), 1001–1024.
PRATSON, L., LEE, H., PARKER, G., GARCÍA, M., COAKLEY, B., MOHRIG, D., LOCAT, J., MELLO, U., PARSONS, J., CHOI, S., & ISREAL, K. 1996. Studies of mass-movement processes on submarine slopes. Oceanography, 9, 168-172. https://doi.org/10.5670/OCEANOG.1996.05.
PRATSON, L.F.; RYAN, W.B.F.; MOUNTAIN, G.S.; DAVID C. TWICHELL, D.C. 1994. Submarine cânion initiation by downslope-eroding sediment flows: Evidence in late Cenozoic strata on the New Jersey continental slope. Geological Society of America Bulletin, v. 106, n.3, p. 395-412.
PUGA-BERNABEU, A.; WEBSTER, J.M.; BEAMAN, R.J.; GUILLBAUD. 2011. Morphology and controls on the evolution of a mixed carbonate-siliciclastic submarine cânion system, Great Barrier Reef margin, north-easthern Australia. Marine Geology. v. 289, p. 100-116.
REEDER, D. B.; MA, B.B.; YANG, Y.J. 2011. Very large subaqueous sand dunes on the upper continental slope in the South China Sea generated by episodic, shoaling deep-water internal solitary waves. Marine Geology, v. 279, n. 1-4, p. 12-18.
RENGSTORF, A.M., YESSON, C., BROWN, C., & GREHAN, A.J. 2019. High-resolution habitat suitability modelling can improve conservation of vulnerable marine ecosystems in the deep sea. Journal of Biogeography, 46(7), 1645–1659.
RETEGUI, L., CASAS, D., CASALBORE, D., YENES, M., NESPEREIRA, J., ESTRADA, F., CANARI, A., CHIOCCI, F., IDÁRRAGA-GARCÍA, J., TEIXEIRA, M., RAMOS, J., & LÓPEZ-GONZÁLEZ, N. 2024. Size-frequency distribution of submarine mass movements on the palomares continental slope (W Mediterranean). Marine Geology. https://doi.org/10.1016/j.margeo.2024.107411.
RIBEIRO, RF, DOMINGUEZ, JML, SANTOS, AA, AND RANGEL, AGDAN 2021. Conexão Cânion-Rio Contínua em Margem Passiva: O Caso do Cânion do São Francisco (Leste do Brasil). Geomorfologia 375, 107549. doi:10.1016/j.geomorph.2020.107549
SARDÁ, R., AVILA-PIRES, F.D., & MORALES-RAMÍREZ, Á. 2020. Marine Spatial Planning: A critical review of marine governance in the Western Indo-Pacific and the need for integrated solutions. Ocean & Coastal Management, 192, 105209.
SCHOTT, F.A., DENGLER, M., ZANTOPP, R., STRAMMA, L., FISCHER, J., AND BRANDT, P. (2005). A Circulação Limite Ocidental Rasa e Profunda do Atlântico Sul em 5°–11°S. Journal of Physical Oceanography 35, 11, 2031-2053. DOI: https://doi.org/10.1175/JPO2813.1
SCHRANK, A.B.S.; DE ROS, L.F. Diagenetic processes in cretaceous sandstones from occidental Brazilian Equatorial Margin. Journal of South American Earth Sciences. v. 63, p. 1-19, 2015. DOI:10.1016/j.jsames.2015.06.008.
SCHWARZER, K.; STATTEGGER, K.; VITAL, H.; BECKER, M. Holocene Coastal Evolution of the Rio Açu Area (Rio Grande do Norte, Brazil). J. coast Res., Special Issue 39, p. 140-144, 2006
SHEPARD, F. P. 1937. Submarine Canyons: Steep Valleys in the Sea Floor. Geographical Review, 27(2), 293–299.
SHEPARD, F. P. 1965. Submarine Geology. Harper & Row, 557 p.
SPINELLI, G.A.; FIELD, M.E. Evolution of continental slope ravines on the northern margin of California. Evolution of continental slope gullies on the northern California margin. Journal of Sedimentary Research, v. 71, n. 2, p. 237-245, 2001.
SUN, M., LIU, Y., ZHAO, L., XIE, W., & MAO, W. 2025. Advances and challenges in assessing submarine landslide risks to marine infrastructure. Natural Hazards. https://doi.org/10.1007/s11069-025-07113-6.
TAVARES, A. C., De Castro, D. L., Bezerra, F., Oliveira, D. C., Vannucchi, P., Iacopini, D., Jovane, L., Vital, H. 2020. The Romanche fracture zone influences the segmentation of the equatorial margin of Brazil. Journal of South American Earth Sciences, v. 103, p. 102738. https://doi.org/10.1016/j.jsames.2020.102738
THOMAZ FILHO, A.; SZATMARI, P.; MILANI, E. J. 2007. Evolução tectônica da margem equatorial brasileira. Boletim de Geociências da Petrobras, v. 15, n. 2, p. 135-147.
TOURNADOUR, E., MULDER, T., BORGOMANO, J., GILLET, H., CHABAUD, L., DUCASSOU, E., T HANQUIEZ, V., ETIENNE, S., 2017. Submarine cânion morphologies and evolution in modern carbonate settings: The northern slope of Little Bahama Bank, Bahamas. Marine Geology, v. 391, p. 76-97.
WINDLEY, B. F. 1984. Structural controls on continental break-up. London: Geological Society Special Publications.
WÖLFL, A., SNAITH, H., AMIREBRAHIMI, S., DEVEY, C., DORSCHEL, B., FERRINI, V., HUVENNE, V., JAKOBSSON, M., JENCKS, J., JOHNSTON, G., LAMARCHE, G., MAYER, L., MILLAR, D., PEDERSEN, T., PICARD, K., REITZ, A., SCHMITT, T., VISBECK, M., WEATHERALL, P., & WIGLEY, R. 2019. Seafloor Mapping – The Challenge of a Truly Global Ocean Bathymetry. Frontiers in Marine Science. https://doi.org/10.3389/fmars.2019.00283
WYNN, R. B.; CROOK, B. A.; PEAKALL, J. 2007. Sinuous deep-water channels: genesis, geometry and architecture. Marine and Petroleum Geology, v. 24, p. 341-387.
WYNN, R.B.; STOW, D.A.V. 2002. Classification and characterisation of deep-water sediment waves. Marine Geology, v. 192, n. 1-3, p. 7-22.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2025 Isabelly Maria Maia Ferro, Dakson Silva da Costa, Mary Lucia Da Silva Nogueira, Guilherme Augusto Mendonça Maia, João Capistrano Abreu Neto, Helenice Vital, Narelle Maia de Almeida

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
A Quaternary Environmental Geosciences adota a Licença Creative Commons, CC BY 4.0 Atribuição não comercial. Com essa licença é permitido acessar, fazer download, copiar, imprimir, compartilhar, reutilizar e distribuir os artigos, para qualquer fim, com a citação da fonte, conferindo os devidos créditos autorais à Quaternary Envronmental Geosciences.
Os direitos autorais são de propriedade exclusiva da revista, transferidos por meio da Declaração de Transferência de Direitos Autorais assinada pelos autores.
