PERFORMING 3D SIMILARITY TRANSFORMATION WITH LARGE ROTATION ANGLES USING CONSTRAINED MULTIVARIATE TOTAL LEAST SQUARES
Keywords:
3D similarity transformation, constraint, large rotation angle, multivariate total least squares.Abstract
3D similarity transformation is frequently encountered operation in the field of geodetic data processing, and there are many applications that involve large rotation angles. In previous studies, the errors of the coefficient matrix were usually neglected and a least squares algorithm was applied to calculate the transformation parameters. However, the coefficient matrix is composed of the point coordinates in source coordinate system, i.e., the coefficient matrix is also contaminated by errors. Therefore, a total least squares algorithm should be applied. In this paper, a new method is proposed to address the 3D similarity transformation problem with large rotation angles. Firstly, the scale factor and rotation matrix are put together as the parameter matrix to avoid the rank-defect problem. Then, the translation vector is removed and the multivariate model is constructed. Finally, the constraints are introduced according to the properties of the parameter matrix and the constrained multivariate total least squares algorithm is derived to obtain the transformation parameters. The experimental results show that the proposed method has a high computational efficiency.
Downloads
Published
How to Cite
Issue
Section
License
Submission of an original manuscript to the Journal will be taken to mean that it represents original work not previously published, that is not being considered elsewhere for publication.
The BCG allows the author(s) to hold the copyright without restrictions and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
The BCG also allows the authors to retain publishing rights without restrictions.
