COMPARISON BETWEEN ABSOLUTE AND RELATIVE POSITIONAL ACCURACY ASSESSMENT - A CASE STUDY APPLIED TO DIGITAL ELEVATION MODELS
Abstract
This paper presents a comparative study between the absolute and relative methods for altimetric positional accuracy of Digital Elevation Models (DEM). For the theoretical basis of this research, the definitions of accuracy (exactness) and precision, as well the concepts related to absolute and relative positional accuracy were explored. In the case study, the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and the Shuttle Radar Topography Mission (SRTM) DEM were used. In the analysis of the absolute accuracy, 6,568 ground control points from GNSS orbital survey were used, collected through relative-static method. In the relative accuracy, it was used as reference DEM with spatial resolution of 5 meters generated by stereophotogrammetrical process for the Mapping Project of Bahia (Brazil). It was concluded that, once the accuracy of the reference DEM is better than the other two evaluated DEM, the results of the classification for the PEC-PCD for the relative evaluation are equal to or better than the absolute evaluation results, with the advantage to being able to verify the pixel population of the evaluated models, which makes it possible to identify outliers, distortions and displacements, including delimiting regions, which is much less likely with a limited set of control points